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Abstract

Despite the immense success of deep learning in reinforcement learning and control,
few theoretical guarantees for neural networks exist for these problems. Deriving perfor-
mance guarantees is challenging because control is an online problem with no distributional
assumptions and an agnostic learning objective, while the theory of deep learning so far
focuses on supervised learning with a fixed known training set.

In this work, we begin to resolve these challenges and derive the first regret guarantees
in online control over a neural network -based policy class. In particular, we show sublinear
episodic regret guarantees against a policy class parameterized by deep neural networks, a
much richer class than previously considered linear policy parameterizations. Our results
center on a reduction from online learning of neural networks to online convex optimization
(OCO), and can use any OCO algorithm as a blackbox. Since online learning guarantees
are inherently agnostic, we need to quantify the performance of the best policy in our policy
class. To this end, we introduce the interpolation dimension, an expressivity metric, which
we use to accompany our regret bounds. The results and findings in online deep learning
are of independent interest and may have applications beyond online control.

1. Introduction

The use of deep neural networks has been highly successful in reinforcement learning (RL)
and continuous control problems. However, a theory for deep control and RL remains
challenging. The main difficulty in applying the theory developed for supervised learning to
the RL domain is the distributional assumptions and realizability goal made in the literature
thus far. In control and RL, the environment is inherently online and often nonstochastic,
and the goal is usually agnostic learning with respect to a policy class.

In this work, we consider the problem of online episodic control with neural network-
based policies. We begin to resolve the aforementioned challenges and derive the first regret
bound guarantees in this setting. Provable regret bounds in this domain have thus far been
limited to linear controllers. However, most dynamical systems in the physical world are
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nonlinear and/or require nonlinear controls. An important tool that allows us to go beyond
linear controllers is the emerging paradigm of online nonstochastic control: a methodology
for control that is robust to adversarial noise in the dynamics. The important aspect of this
paradigm to our study is that it uses policy classes that admit a convex parameterization.

It is natural to consider the online episodic control setting: although it is less challenging
from a technical perspective than single-trajectory control, the policy learning procedure
in empirical deep control is often done episodically as detailed in the related work section.
The main technical challenge to this goal is formalizing online learning over deep neural
networks and proving accompanying regret bounds. Given this result, an extension to the
single-trajectory setting is possible.

As the major technical component of this work, we propose a black-box reduction from
online deep learning to online convex optimization (OCO) that attains provable regret
bounds. These bounds apply to the general online learning setting with vector output
predictors and arbitrary convex loss functions. Moreover, the regret guarantees are naturally
agnostic, i.e. they show performance competitive to the best neural network in our policy
class in hindsight without assuming it achieves zero loss. To capture agnostic learning and
derive meaningful guarantees for online learning and control, we also introduce a new metric
of expressivity, namely the “interpolation dimension”, that accompanies our regret bounds.

An interesting conclusion from this reduction is the unifying view that provable con-
vergence and/or generalization bounds for training deep neural networks can be derived
for any OCO method, beyond online and stochastic gradient descent. This includes mirror
descent, adaptive gradient methods, follow-the-perturbed leader and other algorithms. Pre-
viously, convergence and generalization analyses for neural networks were done in isolation
for different optimization algorithms as detailed in the related work section.

Our contributions in this work can be summarized as follows:

• Online episodic deep control: We derive the first provable regret guarantees in
online episodic control with policies based on deep neural networks. Furthermore, we
demonstrate the richness of the considered policy class by showing that it can output
the optimal open-loop control sequence of any single episode.

• Online learning over neural networks: We give a general reduction from online
learning of neural networks to OCO that can use any OCO algorithm as a blackbox.

• Interpolation dimension: To state meaningful guarantees in online agnostic learn-
ing, we introduce the interpolation dimension as an expressivity metric. It is a fun-
damental notion and applies to any hypothesis class.

• Unifying analysis: Our proposed method applies to any OCO algorithm, including
mirror descent and adaptive gradient methods widely used in deep learning. This
leads to a unifying framework for optimization in deep learning: the online learn-
ing framework implies both convergence and generalization bounds in the supervised
learning setting.

1.1. Related work

Online and nonstochastic control. Our study focuses on algorithms which enjoy sub-
linear regret for online control of dynamical systems; that is, whose performance tracks
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a given benchmark of policies up to a term which is vanishing relative to the problem
horizon. Abbasi-Yadkori and Szepesvári (2011) initiated the study of online control under
the regret benchmark for linear time-invariant (LTI) dynamical systems. Bounds for this
setting have since been improved and refined in Dean et al. (2018); Mania et al. (2019);
Cohen et al. (2019); Simchowitz and Foster (2020). Our work instead adopts the online
nonstochastic control setting (Agarwal et al., 2019), that allows for adversarially chosen
(e.g. non-Gaussian) noise and general convex costs that may vary with time. This model
has been studied for many extended settings, see Hazan and Singh (2021) for a compre-
hensive survey. Similar to our control framework, online episodic control is also studied
in Kakade et al. (2020), but the regret definition differs from ours, the results are only
information-theoretic and the system is linear in a kernel space. In terms of nonlinear sys-
tems, one common approach in control is iterative linearization which takes the local linear
approximation via the gradient of the nonlinear dynamics. One can apply techniques from
optimal control to solve the resulting changing linear system. Iterative planning methods
such as iLQR (Tassa et al., 2012), iLC (Moore, 2012) and iLQG (Todorov and Li, 2005)
fall into this category. Recent works (Roulet et al., 2022; Westenbroek et al., 2021) provide
theoretical results and insights to this approach but many theoretical questions about the
approach remain open.

The emerging theory of deep learning. For detailed background on the developing
theory for deep learning, see the book draft (Arora et al., 2021). Among the various studies
on the theory of deep learning, the neural tangent kernel (NTK or linearization) approach
has emerged as the most complete and pervasive: it is not currently believed to fully explain
the practical success but there is no alternative substantial theory yet. This technique shows
that neural networks behave similar to their local linearization and proves that gradient
descent converges to a global minimizer of the training loss (Soltanolkotabi et al., 2018;
Du et al., 2018a,b; Jacot et al., 2018; Bai and Lee, 2019; Lee et al., 2019). The NTK
approach/regime has been expanded to provide various generalization error bounds (Arora
et al., 2019; Wei et al., 2019; Cao and Gu, 2019; Ji and Telgarsky, 2020), and adversarial
training guarantees (Gao et al., 2019; Zhang et al., 2020). As opposed to our generic
approach, a number of different optimization algorithms have been considered in isolation
for analyzing deep learning theory in the NTK regime including (Wu et al., 2019; Cai et al.,
2019; Wu et al., 2021; Zhang et al., 2019).

The results in this work extend upon the described deep learning theory literature; in
particular, we use the same deep learning setup, and follow techniques and results from Gao
et al. (2019); Allen-Zhu et al. (2019). Furthermore, several works in the literature (Cao and
Gu, 2019; Gao et al., 2019; Zhang et al., 2020) have observed and used online components
in their derivations of generalization and adversarial training guarantees. We note that all
these works, unlike our contributions, operate in the supervised learning setting.

Online convex optimization and dimensionality notions in learning. The frame-
work of learning in games has been extensively studied as a model for learning in adversarial
and nonstochastic environments (Cesa-Bianchi and Lugosi, 2006). Online learning was in-
fused with algorithmic techniques from mathematical optimization into the setting of online
convex optimization, see (Hazan, 2019) for a comprehensive introduction. Learnability in
the statistical and online learning settings was characterized using various notions of di-
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mensionality, starting from the VC-dimension, fat-shattering dimension, Rademacher com-
plexity, Littlestone dimension and more. For an extensive treatment see (Mohri et al., 2018;
Shalev-Shwartz and Ben-David, 2014; Vapnik, 1999). Regarding interpolation, Bubeck and
Sellke (2021) establish an inverse relationship between the interpolation ability and robust-
ness of a function class. The notion of interpolation dimension that we introduce here has
found applications in the theory of boosting (Alon et al., 2021).

Deep control. Deep neural networks have advanced the state of the art for continuous
control, not only in simulated environments Tassa et al. (2018); Zhang et al. (2016); Duan
et al. (2016), but also in real-world tasks such as robotic manipulation OpenAI et al. (2018,
2019) and temperature control in office buildings and data centers Wang et al. (2017);
Lazic et al. (2018). In many of these applications, the policy learning procedure is episodic,
where the environment resets at the beginning of an episode. For example, OpenAI et al.
(2018, 2019) train an LSTM policy for manipulating a rubik’s cube with a robotic hand in
the following manner: an environment is generated at the beginning of the episode, which
interacts with the current policy for a fixed number of time steps; then, after collecting the
episodic trajectory, the policy is updated according to a chosen optimization scheme. This
setting is closely related to online episodic control, which we formally describe in Section 2,
and motivates our theoretical analysis of neural network-based policies in this framework.

2. Problem Setting and Preliminaries

Notation. Let ‖ · ‖ denote the Euclidean norm and 〈·, ·〉 the corresponding inner product
between two vectors, matrices, or tensors of the same dimension: 〈x, y〉 = vec(x)>vec(y).
Let Sp = {x ∈ Rp : ‖x‖ = 1} denote the unit p-dimensional sphere, and for a convex set K,
let
∏
K denote projection onto K.

2.1. Deep neural networks and the interpolation dimension

Deep neural networks. Let x ∈ Rp be the p-dimensional input. We define the depth H
network with ReLU activation and scalar output as follows:

x0 = Ax, xh = σrelu(θhxh−1), h ∈ [H], f(θ, x) = a>xH ,

where σrelu(·) is the ReLU function σrelu(z) = max(0, z), A ∈ Rm×p, θh ∈ Rm×m, and
a ∈ Rm. Let θ = (θ1, . . . , θH)> ∈ RH×m×m denote the trainable parameters of the network
and the parameters A, a are fixed after initialization. The initialization scheme is as follows:
each entry in A and θh is drawn i.i.d. from the Gaussian distribution N (0, 2

m), and each
entry in a is drawn i.i.d. from N (0, 1). This setup is common in recent literature and
follows that of Gao et al. (2019).

For vector-valued outputs, we consider a scalar output network for each coordinate.
Suppose for i ∈ [d], fi is a deep neural network with a scalar output; with a slight abuse of
notation, for input x ∈ Rp, denote

f(θ;x) = (f1(θ[1];x), . . . , fd(θ[d];x))> ∈ Rd, (2.1)

where θ[i] ∈ RH×m×m denotes the trainable parameters for the network fi for coordinate i.
Let θ = (θ[1], θ[2], . . . , θ[d]) ∈ Rd×H×m×m denote all the parameters for f .
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In the online setting, the neural net receives an input xt ∈ Rp at each round t ∈ [T ],
and with parameter θ suffers loss `t(f(θ;xt)). Note that this framework generalizes the
supervised learning paradigm. We make the following standard assumptions:

Assumption 1 The input x has unit norm, i.e. x ∈ Sp, ‖x‖2 = 1.

Assumption 2 The loss functions `t(f(θ;x)) are L-Lipschitz and convex in f(θ;x).

Interpolation dimension. Since we aim to prove regret bounds for online learning with
families of deep neural networks as the comparator class, we need to ensure these families
have non-trivial representation power. To this end, we introduce interpolation dimension,
an expressivity metric that can be naturally applied to our setting. In real-valued learning,
we say that a hypothesis class has interpolation dimension of at least k if one can assign
arbitrary real labels to any k different inputs using a hypothesis from that class.

Definition 1 The interpolation dimension of a hypothesis class H = {h : X ⊆ Rp →
Rd} over input domain X at non-degeneracy γ > 0, denoted IX ,γ(H), is the largest cardi-
nality k such that for any set of data points {(xj , yj)}kj=1 satisfying minj 6=l ‖xj − xl‖2 ≥
γ, yj ∈ [−1, 1]d, ∀j ∈ [k], infh∈H

[∑k
j=1 ‖yj − h(xj)‖2

]
= 0 .

The label bound above is 1 for simplicity, but can be extended to any B > 0. Henceforth,
we show that over input domain X = Sp, neural networks that have poly(k, 1

γ ) width have
IX ,γ(H) ≥ k. This enables us to derive regret bounds for online agnostic learning over a
class of neural networks that has interpolation dimension at least k.

In the case of binary classification, interpolation dimension can be seen as the ”dual”
of the VC dimension. More details on the interpolation dimension in binary classification,
connection to VC dimension, and additional examples can be found in Appendix A.1 of the
full manuscript: https://xinyi.github.io/submission_1.pdf.

2.2. Online convex optimization

In Online Convex Optimization (OCO), a decision maker sequentially chooses a point in a
convex set θt ∈ K ⊆ Rd, and suffers loss `t(θt) according to a convex loss function `t : K 7→ R.
The goal of the learner is to minimize her regret, defined as

RegretT =
T∑
t=1

`t(θt)− min
θ∗∈K

T∑
t=1

`t(θ
∗) .

A host of techniques from classical optimization are applicable to this setting and give
rise to efficient low-regret algorithms. To name a few methods, mirror descent, Newton’s
method, Frank-Wolfe and follow-the-perturbed leader all have online analogues, see e.g.
Hazan (2019) for a comprehensive treatment.

As an extension to the OCO framework, we show that regret bounds hold analogously
for the online optimization of nearly convex functions. As we show in later sections, these
regret bounds naturally carry over to the setting of online learning over neural networks.

Definition 2 A function ` : Rn → R is ε-nearly convex over the convex, compact set
K ⊆ Rn iff ∀x, y ∈ K, `(x) ≥ `(y) + ∇̀ (y)>(x− y)− ε .
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The analysis of any algorithm for OCO, including the most fundamental method of
online gradient descent (OGD), extends to this case in a straightforward manner. Let A be
any regret minimization algorithm for OCO with a regret bound given by RegretT (A). This
algorithm A can be applied on the surrogate loss functions ht(θ) = `t(θt) + ∇̀ t(θt)

>(θ− θt)
to obtain regret bounds on the nearly convex losses `t as given below. The described method
is presented in Algorithm 3 which along with more details can be found in Appendix A.2
of the aforementioned full manuscript.

Lemma 3 Suppose `1, . . . , `T are ε-nearly convex, then Algorithm 3 has regret bounded by

T∑
t=1

`t(θt)− min
θ∗∈K

T∑
t=1

`t(θ
∗) ≤ RegretT (A) + εT .

2.3. Online episodic control

Consider the following online episodic learning problem for nonstochastic control over linear
time-varying (LTV) dynamics: there is a sequence of T control problems each with a horizon
K and an initial state x1 ∈ Rdx . In each episode, the state transition is given by

∀k ∈ [1,K], xk+1 = Akxk +Bkuk + wk, (2.2)

where xk ∈ Rdx , uk ∈ Rdu . The system matrices Ak ∈ Rdx×dx , Bk ∈ Rdx×du along with the
next state xk+1 are revealed to the learner after taking the action uk. The disturbances
wk ∈ Rdx are unknown and adversarial but can be a posteriori computed by the learner
wk = xk+1−Akxk−Bkuk. An episode loss is defined cumulatively over the rounds k ∈ [1,K]
according to the convex cost functions ck : Rdx ×Rdu → R of state and action: for a policy
π, the loss is J(π;x1, c1:K) =

∑K
k=1 ck(x

π
k , u

π
k). Like the system matrices, the cost function

ck is also revealed after taking action uk. The transition matrices (Ak, Bk)1:K , initial state
x1, disturbances w1:K and costs c1:K can change arbitrarily over different episodes. The goal
of the learner is to minimize episodic regret by adapting its output policies πt for t ∈ [1, T ],

RegretT (Π) =

T∑
t=1

Jt(πt;x
t
1, c

t
1:K)−min

π∈Π

T∑
t=1

Jt(π;xt1, c
t
1:K), (2.3)

where Π denotes the class of policies the learner competes against.
The model above is presented in its utmost generality: the system in an episode is LTV

and these LTVs are allowed to change arbitrarily throughout episodes. Results for this
model can be applied to derive guarantees for: (1) a simpler setting, learning to control
a single LTV episodically; (2) a more complex setting, first-order guarantees in control or
planning over nonlinear dynamics by taking the Jacobian linearization of the dynamics
(Ahn et al., 2007; Westenbroek et al., 2021; Roulet et al., 2022). We make the following
basic assumptions about the dynamical system in each episode that are common in the
nonstochastic control literature (Agarwal et al., 2019).

Assumption 3 The disturbances satisfy ∀k ∈ [K], ‖wk‖2 ≤W .
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Assumption 4 (Sequential stability) 1 There exist C1, C2 ≥ 1, 0 < ρ1 < 1 such that
the system matrices satisfy:

∀k ∈ [K], ∀n ∈ [1, k),

∥∥∥∥∥
k−n+1∏
i=k

Ai

∥∥∥∥∥
op

≤ C1 · ρn1 , ‖Bk‖op ≤ C2 .

Assumption 5 Each cost function ck : Rdx × Rdu → R is jointly convex and satisfies a
generalized Lipschitz condition ‖∇ck(x, u)‖ ≤ Lc max{1, ‖x‖+ ‖u‖} for some Lc > 0.

The performance of the learner given by (2.3) directly depends on the policy class Π. In
this work, we focus on disturbance based policies, i.e. policies that take past perturbations
as input uk = f(w1:k−1), which are parameterized w.r.t. policy-independent inputs. This
is in contrast to the commonly used state feedback policy uk = f(xk). For example, the
Disturbance Action Control (DAC) policy class, shown to be more general than linear state
feedback policies (Agarwal et al., 2019), outputs controls linear in past finite disturbances,
resulting in a convex parameterization of the state/control and enabling the design of ef-
ficient provable online methods. Our work expands the comparator class by considering
policies that are nonlinear in the past disturbances, represented by neural networks.

Definition 4 (Disturbance Neural Feedback Control) Let πθdnn denote the policy with
control outputs uk given by

∀k ∈ [K], uk = fθ(wk−1, wk−2, . . . , w1) ∈ Rdu ,

where fθ(·) = f(θ; ·) is a neural network defined in (2.1). The policy class is defined as
Πdnn(f ; Θ) = {πθdnn : θ ∈ Θ} with Θ being the set of permissible parameters.

3. Online learning of deep neural networks

We present our technical results in the following two sections; due to space constraints, all
proofs are included in the full manuscript https://xinyi.github.io/submission_1.pdf.
We first present the general framework of online learning with deep neural networks and
state the accompanying regret guarantees. Our framework can use any OCO algorithm as
a black-box as in Algorithm 1, but for our main result, we use projected Online Gradient
Descent (OGD). Projected OGD has explicit regret bounds and variants of GD are widely
used in practice. Observe that, in this case, the parameter update is equivalent to OGD on
the original losses.

The main technical result, provided in Theorem 5, gives a regret bound on the online
agnostic learning of deep neural networks. The benchmark hypothesis class is a class of
deep neural networks with interpolation dimension of at least k where k is decided a priori
and used in the construction of the network.

Theorem 5 Suppose Assumptions 1 and 2 hold, and let HNN(R; θ1) = {f(θ; ·) : θ ∈ Θ}
denote the class of neural networks f(θ; ·) as in (2.1) with parameter set Θ = B(R; θ1) = {θ :

‖θ[i]− θ1[i]‖F ≤ R,∀ i ∈ [d]} and X = Sp. Suppose γ ∈ (0, O
(

1
H

)
], take R = O

(
k3 logm
γ
√
m

)
,

1. This condition is relaxed to sequential stabilizability in Appendix E
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Algorithm 1 Online Learning over Neural Networks

Input: OCO algorithm A, neural network f(·; ·), initial θ1, parameter set Θ = B(R; θ1).
for t = 1 . . . T do

Play θt, receive loss `t(θ) = `t(f(θ;xt)).
Construct ht(θ) = `t(θt) + ∇̀ t(θt)

>(θ − θt).
Update θt+1 = A(h1, . . . , ht) ∈ Θ.

end

then for m ≥ O(p
3/2(k24H12 log8m+d)3/2

γ8
), with probability 1 − O(H + d)e−Ω(log2m) over the

random initialization,

• The function class HNN(R; θ1) has interpolation dimension IX ,γ(HNN(R; θ1)) ≥ k.

• Algorithm 1 using OGD with ηt = 2R
√
d

LH
√
m
· t−1/2 for A attains regret bound

T∑
t=1

`t(f(θt;xt)) ≤ min
g∈HNN(R;θ1)

T∑
t=1

`t(g(xt)) + Õ

(
k3LH

√
dT

γ
+
k4LH5/2

√
dT

γ4/3m1/6

)
,

where Õ(·) hides terms polylogarithmic in m.

The above theorem indicates that the average regret can be minimized up to arbitrary
precision: for any ε > 0, if one chooses sufficiently large network width m = Ω(ε−6) and
sufficiently large number of iterations T = Ω(ε−2), the average regret is bounded by ε.
The interpolation dimension bound is established due to the seminal work Allen-Zhu et al.
(2019), spelled out in the following lemma and proven in Appendix A.1.

Lemma 6 Let HNN(R; θ1) = {f(θ; ·) : θ ∈ Θ} denote the class of neural networks as in

(2.1) where Θ = B(R; θ1) and X = Sp. Suppose γ ∈
(
0, O( 1

H )
]
, m ≥ Ω

(
k24H12 log5m

γ8

)
and

R = O
(
k3 logm
γ
√
m

)
, then with probability 1− d · e−Ω(log2m) over random initialization of θ1,

IX ,γ (HNN(R; θ1)) ≥ k . (3.1)

3.1. Proof Sketch

Due to space constraints, we give a proof sketch here; for a more detailed analysis outline,
see Appendix C, and for the full proof see Appendix D. There are 3 steps to the proof of
Theorem 5. First, we show that the considered loss functions `t : Θ→ R, `t(θ) = `t(f(θ;xt))
are nearly convex with respect to the parameter θ. This is due to the observation that in
the overparameterized regime, neural networks behave similarly to their local linearization.

Second, we can use the near convexity of the loss functions `t(θ) for all θ ∈ B(R; θ1),
and Lemma 3 to show a regret bound over the parameter set Θ = B(R; θ1). The bound
is comprised of the sublinear regret of the OCO algorithm used for parameter update, and
the worst-case linear penalty of near convexity εnc · T , where εnc is in terms of R and m.

Finally, we use Lemma 6 to ensure that our choice of R and m give the desired interpo-
lation dimension, and derive the final regret guarantee in terms of k, γ and m, among other
parameters.
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4. Online episodic control with neural network controllers

The online episodic control problem described in Section 2.3 with the policy class Π =
Πdnn(f ; Θ) can be reduced to online learning for neural networks. This reduction is done
by following the current policy each episode, constructing the episode loss, and updating
the policy via an OCO algorithm. Algorithm 2 below uses projected OGD but as in the
previous section, any OCO algorithm can be used instead.

Algorithm 2 Deep Neural Network Episodic Control with OGD

Input: stepsize ηt > 0, initial parameter θ1, parameter set Θ = B(R; θ1).
for t = 1 . . . T do

for k = 1 . . .K do
Observe xtk and construct ztk = vec([wtk−1, . . . , w

t
1,0, . . . ,0, k]) ∈ RK·dx+1.

Normalize ztk =
ztk
‖ztk‖

, and play utk = f(θt, z̄
t
k).

end

Construct loss function Lt(θ) =
∑K

k=1 c
t
k(x

t,θ
k , f(θ, z̄tk)).

Perform gradient update θt+1 =
∏

Θ[θt − ηt∇θLt(θt)].
end

Theorem 7 Suppose Assumptions 3, 4, 5 hold and let Πdnn(f ; Θ) denote the policy class

given by Definition 4 with Θ = B(R; θ1). Take R = O
(
K3(2KW+H) logm√

m

)
, then for m ≥

Ω(K46H20W 8(dxdu)3/2 log12m) with probability at least 1 − O(H + du)e−Ω(log2m) over the

randomness of initialization θ1, Algorithm 2 with ηt = O( R
√
du

LH
√
m
t−1/2) satisfies

RegretT (Πdnn(f ; Θ)) ≤ Õ

(
K10LcH

4W 2dud
1/2
x ·
√
T +

K12LcH
6W 3dud

1/2
x

m1/6
· T

)
,

where Πdnn(f ; Θ) can output the optimal open-loop control sequence u?1:K ∈ [−1, 1]K×du of
any episode and Õ(·) hides terms polylogarithmic in m.

This theorem statement, analogous to Theorem 5, implies that arbitrarily small ε > 0
average episodic regret is attained with a large network width m = Ω(ε−6) and large
number of iterations T = Ω(ε−2). The regret bound is against the benchmark policy class
Πdnn(f ; Θ) which is chosen such that the neural network class has interpolation dimension
k = K. This implies open-loop control optimality over a single episode in the following
way. For simplicity, drop the episode index t ∈ [T ] and define the optimal open-loop control
sequence of an episode.

Definition 8 Define the optimal open-loop control sequence u?1:K ∈ [−1, 1]K×du to be

u?1:K = arg min
∀k,uk∈[−1,1]du

{
J(u1:K ;x1, c1:K) =

K∑
k=1

ck(xk, uk)

}
.
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To demonstrate the capacity of the benchmark policy class Πdnn(f ; Θ) with Θ = B(R; θ1)
we show that it can output the optimal open-loop control sequence of any single episode as
detailed below.

Lemma 9 Take R = O
(
K3 logm(2KW+H)√

m

)
, suppose m ≥ Ω

(
K24H12 log5m(2KW +H)8

)
,

then with probability 1− du · e−Ω(log2m) over the random initialization of θ1, Πdnn(f ; Θ) can
output any open-loop control sequence u?1:K ∈ [−1, 1]K×du:

inf
πθdnn∈Πdnn(f ;Θ)

[
K∑
k=1

‖uθk − u?k‖2
]

= 0 .

4.1. Proof Sketch

To extend the online learning results of Theorem 5 to the online episodic control setting,
we ensure the control setting satisfies the corresponding assumptions. For each k ∈ [K],
denote the padded input zk = vec([wk−1, . . . , w1,0, . . . ,0, k]) ∈ RK·dx+1 where the index is
padded to ensure inputs are separable (Definition 1). To satisfy Assumption 1, normalize
the network inputs z̄k = zk

‖zk‖2 ∈ SK·dx+1.

For a policy πθdnn the episode loss L(θ) = J(πθdnn;x1, c1:K) depends on the parameter θ
through all the K controls uθk = f(θ; z̄k). Denote f̄(θ) = [uθ1, . . . , u

θ
K ]> ∈ RK×du and let

L(θ) = L(f̄(θ)) by abuse of notation. We demonstrate that the reduction to the online
learning setting is achieved by showing that L(f̄(θ)) satisfies the convexity (Lemma 23)
and Lipschitz (Lemma 26) conditions. Hence, for each episode t ∈ [T ], the episode loss
Lt(θ) = Jt(π

θ
dnn;xt1, c

t
1:K) satisfies Assumption 2 and the rest of the derivation is analogous

to that of Theorem 5. Finally, Lemma 9 uses the interpolation dimension property of
the neural network class to conclude the open-loop optimality stated in the theorem. See
Appendix E for full details.

5. Conclusions and Future Work

In this work, we derive the first regret guarantees for neural network based controllers in
online control. Our results are in the online episodic control setting, which is motivated
by empirical research in control and deep reinforcement learning. We propose algorithms
that obtain sublinear episodic regret against the optimal open-loop control sequence of any
episode, which relies on a general reduction from online deep learning to regret minimization.

We also introduce a new metric for the expressive power of a hypothesis class and use it
for characterizing the expressivity of the benchmark neural network class. The definition of
interpolation dimension enables this characterization to be isolated to neural networks but is
in no way specific to them. Many intriguing questions about this expressivity notion remain,
such as its broader connection to statistical learning theory given its close relationship to
the VC dimension.

We use the NTK paradigm to derive the control and online learning results in this
work. However, there still are open questions to understand the empirical success of neural
networks. As deep learning theory advances in this direction, the question of extending
these results to reinforcement learning and control problems remains open too.
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Appendix A. Details for Section 2

A.1. Interpolation dimension

Characterizing the expressive power of the hypothesis class of deep neural networks is an
active area of investigation e.g. (Malach et al., 2021; Yehudai and Shamir, 2019; Rahimi and
Recht, 2008). The literature mostly focuses on differentiating the expressivity of networks
according to their depth, or on proving lower bounds for sample complexity. Our focus,
however, is different. We prove regret bounds for online learning with families of deep
neural networks as the comparator classe, thus we need to ensure that these families have
non-trivial representation power.

It is useful to recall the theory of supervised learning for binary classification. Vapnik’s
theorem asserts that the VC dimension characterizes the learnability of a hypothesis class.
For many common examples of hypothesis classes, the VC dimension also characterizes their
expressive power. For example, linear classifiers of dimension k are capable of shattering
any training set of size k + 1, as long as it is in general linear position (non-degenerate).
This is, however, not a requirement of the VC dimension, which only requires the existence
of a set that can be shattered by the hypothesis class. It is thus useful to consider the
”dual” of the VC dimension, which we formally define as follows:

Definition 10 The interpolation dimension of a hypothesis class H = {h : X 7→ {0, 1}}
over input domain X , denoted IX (H), is the largest cardinality k such that for any non-
degenerate set of examples x1, ..., xk ∈ X , and any labels y1, ..., yk ∈ {0, 1}, the mapping
h(xi) = yi for all i ∈ [1, k] can be expressed by a hypothesis h ∈ H.

By definition, the inequality IX (H) ≤ VC(H) clearly holds, and it is equal for many
common examples, including linear classifiers. Notice that the non-degeneracy assumption
is necessary to avoid non-separability due to “trivial” reasons, such as having two different
labels assigned to the same example.

Observe that while interpolation dimension of k requires all sets of points (under certain
conditions) to be shattered by the hypothesis class, VC dimension of k requires all sets of
points to not be shattered by the hypothesis class. That is, while VC dimension upper
bounds the complexity of a hypothesis class the interpolation dimension does the exact
opposite, i.e. it lower bounds the complexity of the given hypothesis class. The intuitive
conjecture then is that since VC dimension acts as an upper bound on learnability and
generalization for the class, interpolation dimension should provide the dual characteriza-
tion: a hypothesis class is difficult to generalize over (need more samples) if it has a large
interpolation dimension. Formalizing these ideas and developing a theory behind it is left
for future work.

To illustrate this definition of interpolation dimensions as a measure for expressivity, its
relation to the VC dimension and its applicability, consider the following examples:

1. The hypothesis class of linear hyperplanes of dimension k (with bias) has interpolation
dimension k + 1 for any γ > 0 non-degeneracy if the input domain X is restricted to
linearly independent points. In this case, the VC dimension of this class is also equal
to k + 1. However, if the input domain X is not restricted to linearly independent
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points, the interpolation dimension of this hypothesis class equals 2 for any γ > 0
non-degeneracy while the VC dimension remains unchanged.

Observe that the choice of input domain X is crucial and can determine whether there
is equality or a huge gap between VC dimension and interpolation dimension.

2. Consider online learning of a Boolean function {0, 1}log k 7→ {0, 1}. There are 22log k =
2k such functions, and running an experts algorithm such as Hedge on all possible
such functions results in O(

√
Tk) regret, but requires maintaining 2k weights on the

experts. On the other hand, online learning of a deep network (or any hypothesis
class that can be learned efficiently) that has interpolation dimension k can learn the
same class of functions, with regret that is poly(k)

√
T and poly(k) running time.

Note that it is possible to learn this problem efficiently using an experts algorithms
on the possible entries of the truth table of these functions.

Proof [Proof of Lemma 6] Let {(xj , yj)}kj=1 be a set of examples where xj ∈ Sp, yj ∈ [−1, 1]d,

and the xj ’s are at least γ apart, i.e. minj 6=l ‖xj − xl‖2 ≥ γ with γ ∈ (0, O
(

1
H

)
]. Let yj,i

denote the i-th coordinate of the label yj , and recall that fi(θ[i];x) is the scalar output of
the vector-valued deep neural network at coordinate i, with parameters θ[i] and input x.

Fix any arbitrary ε > 0. By Theorem 1 in Allen-Zhu et al. (2019), for m ≥ Ω(k
24H12 log5m

γ8
),

R = O(k
3 logm
γ
√
m

), for any fixed i ∈ [d], with probability at least 1 − e−Ω(log2m), there exists

θ∗[i] such that ‖θ∗[i]− θ1[i]‖F ≤ R, and

k∑
j=1

(fi(θ
∗[i];xj)− yj,i)2 ≤ ε

d
.

The existence of such θ∗ follows from the statement of the aforementioned theorem, i.e.
gradient descent finds such θ∗ in a finite number of iterations (convergence rate is irrelevant).
Note that our choice of m and R satisfy the above conditions. Taking a union bound, we
conclude that with probability at least 1− d · e−Ω(log2m), there exists θ∗ = (θ∗[1], . . . , θ∗[d])
such that for all i, ‖θ∗[i]− θ1[i]‖F ≤ R, and

k∑
j=1

‖f(θ∗;xj)− yj‖22 =
d∑
i=1

k∑
j=1

(fi(θ
∗[i];xj)− yj,i)2 ≤ ε.

This conclusion is true for any ε > 0 and training set {(xj , yj)}kj=1 satisfying the stated
conditions. In other words, we have that for H = HNN(R; θ1)

∀ε > 0, ∃h ∈ H,
k∑
j=1

‖h(xj)− yj‖2 ≤ ε =⇒ inf
h∈H

 k∑
j=1

‖h(xj)− yj‖2
 = 0 .

Thus, by the definition of interpolation dimension, the hypothesis class HNN(R; θ1), under
input domain X and at non-degeneracy γ, has interpolation dimension at least k, which
concludes the proof of this lemma.
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A.2. Online nearly convex optimization

The full algorithm for extending OCO to nearly convex loss functions `t is presented in
Algorithm 3. In addition to the proof of Lemma 3, we provide a corollary with OGD as
the OCO algorithm A to use the explicit regret bound in further derivations. The proof of
the corollary simply follows by plugging in the appropriate regret (and stepsize) value for
OGD.

Algorithm 3 Online Nearly-Convex Optimization

Input: OCO algorithm A for convex decision set K.
for t = 1 . . . T do

Play θt, observe `t.
Construct ht(θ) = `t(θt) + ∇̀ t(θt)

>(θ − θt).
Update θt+1 = A(h1, ..., ht) ∈ K.

end

Proof [Proof of Lemma 3] Observe that by the ε-nearly convex property, for all θ ∈ K,

ht(θ)− `t(θ) = `t(θt) + ∇̀ t(θt)
>(θ − θt)− `t(θ) ≤ ε.

Moreover, by construction the functions ht(·) are convex and ht(θt) = `t(θt) for all t ∈ [T ].
The regret can be decomposed as follows, for any fixed θ∗ ∈ K,

T∑
t=1

(
`t(θt)− `t(θ∗)

)
≤

T∑
t=1

(
ht(θt)− ht(θ∗)

)
+ εT ≤ RegretT (A) + εT.

Taking θ∗ ∈ K to be the best decision in hindsight concludes the lemma proof.

Corollary 11 Suppose {`t}Tt=1 are ε-nearly convex and let A be OGD with stepsizes ηt =
2R
G · t

−1/2, then Algorithm 3 has regret

T∑
t=1

`t(θt)− min
θ∗∈K

T∑
t=1

`t(θ
∗) ≤ 3RG

√
T + εT,

where G is the gradient norm upper bound for all `t, t ∈ [T ], and R is the radius of K.

Appendix B. Online learning with two-layer neural networks

To showcase the key ideas behind the main result in this work and a connection to the NTK
line fo works, we consider a simpler setting as a warmup: online learning of two-layer neural
networks. The setup in this section along with many of the derivations follow that of Gao
et al. (2019).
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Two-layer Neural Networks. For inputs x ∈ Rp, define the vector-valued two-layer
neural network f : Rp → Rd with a smooth activation function σ : R → R, even hidden
layer width m and weights θ ∈ Rd×m×p expressed as follows: for all i ∈ [d] with parameter
θ[i] ∈ Rm×p, f(θ;x) = (f1(θ[1];x), . . . , fd(θ[d];x))> ∈ Rd, where

fi(θ[i];x) =
1√
m

(m/2∑
r=1

ai,rσ(θ[i, r]>x) +

m/2∑
r=1

āi,rσ(θ̄[i, r]>x)
)
. (B.1)

The parameter for each i ∈ [d] is given by θ[i] = (θ[i, 1], . . . , θ[i, m2 ], θ̄[i, 1], . . . , θ̄[i, m2 ]). The
scaling factor 1√

m
is chosen optimally in retrospect of the analysis. We initialize ai,r to be

randomly drawn from {±1}, choose āi,r = −ai,r, and fix them throughout training. The
initialization scheme for θ is as follows: for all i ∈ [d], θ1[i, r] ∼ N(0, Ip) for r = 1, . . . , m2 ,
and θ̄1[i, r] = θ1[i, r]. This symmetric initialization scheme is chosen so that fi(θ1[i];x) = 0
for all x ∈ Sp to avoid some technical nuisance. We make the following assumption on the
general activation function:

Assumption 6 The activation function σ is C−Lipschitz and C−smooth: |σ′(z)| ≤
C, |σ′(z)− σ′(z′)| ≤ C|z − z′|.

This warmup setting serves two purposes: (1) the key analysis structure is analogous
to that of Section 3 with simpler details so this section can be a stepping stone to the
main analysis; (2) to contrast with our approach of measuring the expressivity of the neural
networks with interpolation dimension, in this setting we quantify the expressivity of the
hypothesis class via the Neural Tangent Kernel (NTK) (Jacot et al., 2018) approach by
relating the considered class of neural networks to a different function class.

Consider the neural network given in (B.1). Let Kσ denote the NTK of the two-layer
network and HRKHS(Kσ) denote the RKHS of the Kσ kernel. To obtain non-asymptotic
guarantees, we restrict to RKHS functions of bounded norm. In this pursuit, we define the
class of Random Feature functions HRF(∞), which is dense in HRKHS(Kσ), construct its
multidimensional analog HdRF(∞), and restrict it to the functions HdRF(D) of bounded RF-
norm D. See Appendix B.1 for formal treatment. The regret bound given below consists of
two parts: the regret for learning the optimal neural network parameters in the parameter
set Θ, and the approximation error of neural networks to the target function in HdRF(D).

Theorem 12 Let f be a two-layer neural network as in (B.1) with the parameter set
Θ = B(R; θ1) = {θ ∈ Rd×m×p : ‖θ − θ1‖F ≤ R}, and suppose Assumptions 1, 2, 6 hold.
For any δ > 0, D > 1, take R = D

√
d, then with probability at least 1− δ over the random

initialization, Algorithm 1 with OGD as the base algorithm and stepsizes ηt = 2R
CL · t

−1/2

satisfies

T∑
t=1

`t(f(θt;xt)) ≤ min
g∈HdRF(D)

T∑
t=1

`t(g(xt)) + Õ

(
L
√
dpCD2T√
m

)
+O

(
CLD

√
dT +

CLD2dT√
m

)

where Õ(·) hides factors that are polylogarithmic in δ, d.
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The radius R being a constant w.r.t. m indicates small movement of the parameters (num-
ber of parameters is linear in m). The regret bound is increasing in terms of D which
characterizes the expressivity of the benchmark function class HdRF(D). Finally, to achieve
ε average regret, it suffices to take large enough width m = Ω(ε−2) and large number of
iterations T = Ω(ε−2).

Proof structure. The analysis of the above theorem goes through 3 main components
similar to the proof of the deep net case:

1. near convexity: the losses `t(θ) = `t(f(θ;xt)) are nearly convex (Lemma 13).

2. regret guarantee: regret is bounded against the parameter set Θ = B(R; θ1)
(Lemma 14).

3. expressivity: any function g ∈ HdRF(D) is approximated by a network (Lemma 15).

Lemma 13 For any θ ∈ B(R; θ1) and any t ∈ [T ], the loss function `t(θ) = `t(f(θ;xt)) is

εnc-nearly convex as in (2) with εnc = 2CLR2
√
m

.

Lemma 14 Algorithm 1 with ηt = 2R
CL · t

−1/2 attains regret bound

T∑
t=1

`t(θt) ≤ min
θ∈B(R;θ1)

T∑
t=1

`t(θ) + 3CLR ·
√
T +

2CLR2

√
m
· T . (B.2)

Lemma 15 For any δ,D > 0, let g : Rp → Rd ∈ HdRF(D), and let R = D
√
d, then with

probability at least 1−δ over the random initialization of θ1, there exists θ∗ ∈ B(R; θ1) such
that

∀x ∈ Sp, `t(f(θ∗;x)) ≤ `t(g(x)) +
L
√
dCD2

2
√
m

+
L
√
dCD√
m

(2
√

2p+ 2
√

log d/δ) .

B.1. Further details for Section B

Neural Tangent Kernel. The Neural Tangent Kernel (NTK) was first introduced in
Jacot et al. (2018), who showed a connection between overparameterized neural networks
and kernel methods. We characterize the net’s expressivity by the capacity of learning
functions in the RKHS of the NTK, which for our two-layer neural network has the following
form:

Definition 16 The NTK for the scalar two-layer neural network with activation σ and in-
tialization distribution θ ∼ N (0, Ip) is defined as Kσ(x, y) = Eθ∼N (0,Ip)〈xσ′(θ>x), yσ′(θ>y)〉.

Let H(Kσ) denote the RKHS of the NTK. Intuitively, H(Kσ) represents the space
of functions that can be approximated by a neural network with kernel Kσ. To obtain
non-asymptotic approximation guarantees, we focus on RKHS functions of bounded norm,
specifically the RF-norm as defined below.
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Definition 17 ((Gao et al., 2019)) Consider functions of the form

h(x) =

∫
Rd
c(w)>xσ′(w>x)dw.

Define the RF-norm of h as ‖h‖RF = supw
‖c(w)‖2
p0(w) , where p0(w) is the probability density

function of N (0, Ip). Let

FRF (D) = {h(x) =

∫
Rd
c(w)>xσ′(w>x)dw : ‖h‖RF ≤ D}, (B.3)

and extend to the multi-dimensional case, FdRF (D) = {h = (h1, h2, . . . , hd) : hi ∈ FRF (D)}.

By Lemma C.1 in Gao et al. (2019), the class of Random Feature functions, FRF (∞),
is dense in H(Kσ) with respect to the ‖ · ‖∞,S norm, where ‖h‖∞,S = supx∈Sp |h(x)|. Since
we are concerned with the approximation of the function value over the unit sphere, it is
sufficient to consider FdRF (∞), and further restrict to FdRF (D) for explicit nonasymptotic
guarantees. The remaining of this section covers the proofs of the claims in Section B. We
remark that the scaling factor in (B.1) is optimally chosen to be b =

√
m in the proof of

Theorem 12.

Proof [Proof of Theorem 12] Let g ∈ FdRF (D). By Lemma 15, with probability at least
1− δ over the random initialization θ1, there exists θ∗ ∈ B(R) such that for all x ∈ Sp,

`t(f(θ∗;x)) ≤ `t(g(x)) +
L
√
dbCD2

2m
+
L
√
dCD√
m

(2
√

2p+ 2
√

log d/δ)

≤ `t(g(x)) + Õ

(
L
√
dpCD2

√
m

)
,

using the optimal scaling factor choice b =
√
m. By the regret guarantee in Lemma 14,

Algorithm 1 has regret

T∑
t=1

`t(θt) ≤ min
θ∈B(R)

T∑
t=1

`t(θ) +
3CLR

√
mT

b
+

2CLR2

b
T (B.4)

= min
θ∈B(R)

T∑
t=1

`t(θ) +O(CLR
√
T +

CLR2

√
m

T ). (B.5)

Combining them and using R = D
√
d, we conclude

T∑
t=1

`t(θt) ≤ min
θ∈B(R)

T∑
t=1

`t(θ) +O(CLR
√
T +

CLR2

√
m

T )

≤
T∑
t=1

`t(θ
∗) +O(CLR

√
T +

CLR2

√
m

T )

≤
T∑
t=1

`t(g(xt)) +O(CLR
√
T +

CLR2

√
m

T ) + Õ(
L
√
dpCD2T√
m

)
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The theorem follows by noticing that the inequality holds for any arbitrary g ∈ FdRF (D).

Proof [Proof of Lemma 13] We extend the original proof in Gao et al. (2019). Let diag(ai)
be a diagonal matrix with
(a1,i, . . . , am/2,i,−a1,i, . . . ,−am/2,i) on the diagonal. Note that the gradient of the network
at the i-th coordinate is

∇θ[i]fi(θ[i];x) =
1

b
diag(ai)σ

′(θ[i]x)x>. (B.6)

We can show that the gradient is Lipschitz as follows, for all x ∈ Sp,

‖∇θ[i]fi(θ[i];x)−∇θ[i]fi(θ′[i];x)‖F ≤
1

b
‖diag(ai)‖2‖σ′(θ[i]x)− σ′(θ′[i]x)‖2‖x‖2 (B.7)

≤ C

b
‖θ[i]− θ′[i]‖F . (|ar,i| = 1, ‖x‖2 = 1)

For each `t(f(θ;xt)) according to the convexity property we have

`t(θ
′)− `t(θ) ≥ ∇f `t(θ)>(f(θ′;xt)− f(θ;xt))

=
d∑
i=1

∂`t(θ)

∂fi(θ[i];xt)
(fi(θ

′[i];xt)− fi(θ[i];xt))

For each i ∈ [d], we use the fundamental theorem of calculus to rewrite function value
difference as

fi(θ
′[i];xt)− fi(θ[i];xt) = 〈∇θ[i]fi(θ[i];xt), θ′[i]− θ[i]〉+R(fi, θ[i], θ

′[i]) (B.8)

R(fi, θ[i], θ
′[i]) =

∫ 1

0
〈∇θ[i]fi(sθ′[i] + (1− s)θ[i];xt)−∇θ[i]fi(θ[i];xt), θ′[i]− θ[i]〉ds.

Note that since the gradient of fi is Lipschitz given by (B.7), the residual term is bounded
in magnitude as follows,

|R(fi, θ[i], θ
′[i])| ≤

∫ 1

0

C

b
‖s(θ′[i]− θ[i])‖F · ‖θ′[i]− θ[i]‖Fds =

C

2b
‖θ′[i]− θ[i]‖2F .

Hence we can show that the loss is nearly convex with respect to θ,

`t(θ
′)− `t(θ) ≥

d∑
i=1

∂`t(θ)

∂fi(θ[i];xt)
(fi(θ

′[i];xt)− fi(θ[i];xt))

=
d∑
i=1

∂`t(θ)

∂fi(θ[i];xt)

(
〈∇θ[i]fi(θ[i];xt), θ′[i]− θ[i]〉+R(fi, θ[i], θ

′[i])
)

≥
d∑
i=1

〈 ∂`t(θ)

∂fi(θ[i];xt)
∇θ[i]fi(θ[i];xt), θ′[i]− θ[i]〉 −

C

2b

d∑
i=1

∣∣∣∣ ∂`t(θ)

∂fi(θ[i];xt)

∣∣∣∣ · ‖θ′[i]− θ[i]‖2F
≥ 〈∇θ`t(θ), θ′ − θ〉 −

CL

2b
‖θ′ − θ‖2F ,
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where the last inequality uses the L-Lipschitz property of the loss `t(·) with respect to f .
Using a diameter bound for θ, θ′ ∈ B(R) we get that ‖θ− θ′‖F ≤ 2R which results in near

convexity of `t(·) with εnc = 2CLR2

b with respect to θ.

Proof [Proof of Lemma 14] The theorem statement is shown by using Corollary 11 and
showing that the loss functions `t : Rd×m×p → Rd satisfy near-convexity with respect to θ.
First, the decision set in this case is K = B(R) so its radius is R. Lemma 13 shows that

the loss functions `t(θ) are εnc-nearly convex with εnc = 2CLR2

b . Finally, we can show that
the gradient norm is bounded as follows,

‖∇θ`t(θ)‖2F =

d∑
i=1

‖∇θ[i]`t(θ)‖2F =

d∑
i=1

∣∣∣∣ ∂`t(θ)

∂fi(θ[i];xt)

∣∣∣∣2 · ‖∇θ[i]fi(θ[i];xt)‖2F ≤ C2L2m

b2
,

where we use the L-Lipschitz property of `t(f(θ;x)) and the fact that the fi gradient is

bounded ‖∇θ[i]fi(θ[i];xt)‖F ≤
√
mC/b given (B.6). This means that G = CL

√
m

b and we
can use the Corollary 11 to conclude the final statement in (B.2).

Lemma 18 For any δ,D > 0, let g : Rp → R ∈ FRF (D) and let R′ = bD√
m

, then for a

fixed i ∈ [d], with probability at least 1 − δ over the random initialization θ1, there exists
θ∗ ∈ Rm×p such that ‖θ∗ − θ1‖F ≤ R′, and for all x ∈ Sp,

|fi(θ∗;x)− g(x)| ≤ bCD2

2m
+

CD√
m/2

(2
√
p+

√
2 log 1/δ).

Proof Since the neural network architectures are the same for all i ∈ [d], we fix an arbitrary
i and drop the index i for θ[i] throughout the proof. By Proposition C.1 in Gao et al.
(2019), for any δ > 0, with probability at least 1− δ over the randomness of θ1, there exist

c1, · · · , cm/2 ∈ Rp with ‖cr‖2 ≤ 2‖g‖RF
m ∀ r ∈ [m2 ], such that g1(x) =

∑m/2
r=1 c

>
r xσ

′((θ1[r])>x)
satisfies

∀ x ∈ S, |g1(x)− g(x)| ≤ C‖g‖RF√
m/2

(2
√
p+

√
2 log 1/δ),

where θ1[r] represents the r-th row of θ1. Now, we proceed to construct a θ∗ such that
fi(θ

∗;x) is close to g1(x). We note that by symmetric initialization fi(θ1;x) = 0 for all
x ∈ Sp. Then, use the fundamental theorem of calculus similarly to (B.8) to decompose fi
as follows:

fi(θ;x) = fi(θ;x)− fi(θ1;x)

=
1

b

(m/2∑
r=1

ar(θ[r]− θ1[r])>xσ′((θ1[r])>x)−
m/2∑
r=1

ar(θ̄[r]− θ̄1[r])>xσ′((θ̄1[r])>x)
)

+
1

b

(m/2∑
r=1

ar

∫ 1

0
x>(θ[r]− θ1[r])(σ′((tθ[r] + (1− t)θ1[r])>x)− σ′((θ1[r])>x))dt

−
m/2∑
r=1

ar

∫ 1

0
x>(θ̄[r]− θ̄1[r])(σ′((tθ̄[r] + (1− t)θ̄1[r])>x)− σ′((θ̄1[r])>x))dt

)
.
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Consider θ∗ ∈ Rm×p such that θ∗[r] = θ1[r] + b
2crar, θ̄

∗[r] = θ̄1[r] − b
2crar, where θ̄∗[r]>

represents the m
2 + r-th row of θ∗. Then

‖θ∗[r]− θ1[r]‖2, ‖θ̄∗[r]− θ̄1[r]‖2 ≤
b‖g‖RF
m

, and the linear part of fi satisfies

1

b

(m/2∑
r=1

ar(θ
∗[r]− θ1[r])>xσ′((θ1[r])>x)−

m/2∑
r=1

ar(θ̄
∗[r]− θ̄1[r])>xσ′((θ̄1[r])>x)

)
=

1

b

(m/2∑
r=1

a2
r

b

2
c>r xσ

′((θ1[r])>x) +

m/2∑
r=1

a2
r

b

2
c>r xσ

′((θ̄1[r])>x)
)

=
1

b

(m/2∑
r=1

b

2
c>r xσ

′((θ1[r])>x) +

m/2∑
r=1

b

2
c>r xσ

′((θ1[r])>x)
)

=

m/2∑
r=1

c>r xσ
′((θ1[r])>x) = g1(x).

Now we bound the residual part of fi, by using the triangle inequality, and the smoothness
of σ(·), as follows

|fi(θ∗;x)− g1(x)| = 1

b

∣∣m/2∑
r=1

ar

∫ 1

0
x>(θ∗[r]− θ1[r])(σ′((tθ∗[r] + (1− t)θ1[r])>x)− σ′((θ1[r])>x))dt

−
m/2∑
r=1

ar

∫ 1

0
x>(θ̄∗[r]− θ̄1[r])(σ′((tθ̄∗[r] + (1− t)θ̄1[r])>x)− σ′((θ̄1[r])>x))dt

∣∣
≤ mC

b

b2

4

4‖g‖2RF
2m2

=
bC‖g‖2RF

2m
.

Using the triangle inequality, we can bound the approximation error as follows,

|fi(θ∗;x)− g(x)| ≤ |fi(θ∗;x)− g1(x)|+ |g1(x)− g(x)|

≤
bC‖g‖2RF

2m
+
C‖g‖RF√

m/2
(2
√
p+

√
2 log 1/δ).

Finally, observe that θ∗ is close to θ1:

‖θ∗ − θ1‖2F ≤
m∑
r=1

‖θ∗[r]− θ1[r]‖22 ≤
b2‖g‖2RF

m
≤ b2D2

m
= (R′)2.

Proof [Proof of Lemma 15] Let g = (g1, . . . , gd) ∈ FdRF (D). By Lemma 18, if R′ = bD√
m

,

with probability at least 1− δ/d, for each i there exists θ∗[i] such that ‖θ∗[i]− θ1[i]‖F ≤ R′,
and

|fi(θ∗[i];x)− gi(x)| ≤ bCD2

2m
+

CD√
m/2

(2
√
p+

√
2 log d/δ).
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Let θ∗ = (θ∗[1], . . . , θ∗[d]). Taking a union bound, with probability at least 1− δ,

`t(f(θ∗;x)) = `t(f1(θ∗[1];x), . . . , fd(θ
∗[d];x))

≤ `t(g1(x), . . . , gd(x)) + L

√√√√ d∑
i=1

(
fi(θ∗[i];x)− gi(x)

)2
≤ `t(g(x)) +

Lb
√
dCD2

2m
+
L
√
dCD√
m/2

(2
√
d+

√
2 log d/δ).

Finally, observe that ‖θ∗ − θ1‖F ≤
√
dR′ = R.

Appendix C. Analysis Outline

In this section, we showcase the key ideas behind the analysis of the main results in this work
(see Appendix D for full details). The regret guarantee in online learning of deep neural
networks, Theorem 5, is the main technical component of our work and is of potential
independent interest. The theorem applies to the general online learning setting, i.e. high-
dimensional outputs, adversarial data and adversarial convex losses, as well as agnostic
bounds, which enables us to derive the final result in Theorem 7: episodic regret bounds in
online episodic learning with neural network based policies.

Proof of Theorem 5. The structure of the theorem proof can be broken down into
3 main parts. First, one has to show that the considered loss functions `t : Θ → R,
`t(θ) = `t(f(θ;xt)) are nearly convex with respect to the parameter θ. This property holds
due to the common observation in the community that in the described overparameterized
regime the neural networks behave similar to their local linearization, and `t(·) simply
applies a convex loss over this local linearization.

Lemma 19 Suppose m ≥ Ω
(
p log(1/R)+log d

R2/3H

)
, and R ≤ O

(
1

H6 log3m

)
, then with prob-

ability 1 − O(H)e−Ω(mR2/3H) over the random initialization, for any θ ∈ B(R; θ1), x ∈
Sp, and t ∈ [T ], the loss function `t(θ) = `t(f(θ;x)) is εnc-nearly convex with εnc =
O
(
R4/3LH5/2

√
dm logm

)
.

The near convexity of the loss functions `t(θ) for all θ ∈ B(R; θ1) along with the observa-
tions from Section 2.2, in particular Lemma 3, result in a regret bound over the parameter
set Θ = B(R; θ1). The bound itself is comprised of the regret of the OCO algorithm used
for parameter update, sublinear in learning horizon T , and the worst-case linear penalty of
near convexity εnc · T .

Lemma 20 Under conditions of Lemma 19, Algorithm 1 with A as the projected OGD

algorithm over stepsizes ηt = 2R
√
d

LH
√
m
· t−1/2 suffers regret

T∑
t=1

`t(θt) ≤ min
θ∈B(R;θ1)

T∑
t=1

`t(θ) +O
(
RLH

√
dmT

)
+O

(
R4/3LH5/2

√
dm logmT

)
. (C.1)
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The obtained regret bound is with respect to the best-in-hindsight parameter θ? in the
parameter set Θ = B(R; θ1) which is a ball around the initialization. The bound above can
be interpreted in terms of the radius of the parameter set: an increasing radius R means a
stronger comparator θ? but a larger regret bound at the same time. This tradeoff is natural
but the neural network class given by parameters θ ∈ B(R; θ1) has its capacity characterized
by R, which is a formulation that is highly specific to the considered setup. Instead, we
use the notion of interpolation dimension to characterize function class expressivity and use
Lemma 6 to derive the final guarantee of the theorem where the described tradeoff is in
terms of the interpolation dimension itself.

Appendix D. Details and Proofs for Section 3

This and the subsequent sections detail the analysis and proofs of the main theorems in
this work following the outline of C. A simpler warmup setting is introduced and analyzed
in isolation in Appendix B to provide more intuition behind the deep learning derivations.
Proof [Proof of Theorem 5] To prove this theorem, we will use both Lemmas 20 and 6. First,
let us verify that the conditions of Lemma 20, i.e. conditions of Lemma 19, are satisfied
given the choice of m,R in the theorem statement. Indeed, under our choice of m, as long

as m ≥ c1k6 log8mH12

γ2
for some sufficiently large c1 > 0, we have k3 logm

γ
√
m
≤ 1√

c1H6 log3m
.

Suppose for some constant c2, taking

R =
c2k

3 logm

γ
√
m

satisfies the condition required for Lemma 6. Then we can set c1 to be large enough such
that c2√

c1
≤ c′ for c′ specified in Lemma 19, and choosing

m ≥ c1p
3/2(k24H12 log8m+ d)3/2

γ8
≥ Ω

(
k24H12 log5m

γ8

)
gives us an R that satisfies the Lemma 19’s condition.

For the condition on m, we simply have

mR2/3H =
c

2/3
2 k2m2/3H log2/3m

γ2/3
≥ (c1c2)2/3p(k24H12 log8m+ d)k2H log2/3m

γ6

≥ (c1c2)2/3p(k24H12 log8m+ d)

≥ Ω(p logO(1/R) + log d).

Observe that under these choices of m,R the conditions from Lemma 6 are trivially satisfied.
Hence, we plug in the value of R into the regret bound (C.1) in Lemma 20 and use Lemma 6
to conclude the final regret bound in Theorem 5. Finally, note that mR2/3H = Ω(log2m),
and by taking a union bound over the events of Lemma 6 and Lemma 20, the failure
probability for the regret bound is

d · e−Ω(log2m) +O(H) · e−Ω(mR2/3H) = O(H + d) · e−Ω(log2m) .
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This concludes the theorem, verifying that the failure probability is low, sincem� max(d,H).

Proof [Proof of Lemma 19] Our proof extends Lemma A.6 in Gao et al. (2019) to our
setting, where the loss is defined over a vector whose coordinates are outputs of different
deep neural networks. A δ-net over Sp is defined as a collection of points {xr} ∈ Sp such
that for all x ∈ Sp, there exists an xj in the δ-net such that ‖xj − x‖2 ≤ δ. Consider a
δ-net of the unit sphere consisting of {xr}Nr=1, and standard results show that such a δ-net
exists with N = (O(1/δ))p. Let i ∈ [d] and r ∈ [N ]. By Lemma A.5 in Gao et al. (2019),
if m ≥ max{d,Ω(H logH)}, R + δ ≤ c

H6 log3m
for some sufficiently small constant c, then

with probability at least 1 − O(H)e−Ω(m(R+δ)2/3H) over the random initialization, for any
θ′[i], θ[i] ∈ B(R) and any x′ ∈ Sp with ‖x′ − xr‖2 ≤ δ,

‖∇θh[i]fi(θ
′[i];x′)−∇θh[i]fi(θ[i];x

′)‖F = O((R+ δ)1/3H2
√
m logm),

‖∇θh[i]fi(θ
′[i];x′)‖F = O(

√
mH),

where θh[i] denotes the parameter for layer h in the network for the i-th coordinate of the
output. Summing over the layers, we have

‖∇θ[i]fi(θ′[i];x′)−∇θ[i]fi(θ[i];x′)‖F = O((R+ δ)1/3H5/2
√
m logm),

‖∇θ[i]fi(θ′[i];x′)‖F = O(H
√
m).

Similar to (B.8), we can write the difference of fi evaluated on θ′[i] and θ[i] as a sum of
a linear term and a residual term R(fi, θ[i], θ

′[i], x′) using the Fundamental Theorem of
Calculus,

fi(θ
′[i];x′)− fi(θ[i];x′) = 〈∇θ[i]fi(θ[i];x′), θ′[i]− θ[i]〉+R(fi, θ[i], θ

′[i], x′) (D.1)

R(fi, θ[i], θ
′[i], x′) =

∫ 1

0

〈
∇θ[i]fi(sθ′[i] + (1− s)θ[i];x′)−∇θ[i]fi(θ[i];x′), θ′[i]− θ[i]

〉
ds

(D.2)

Since we can bound the change of the gradient, we can bound the residual term as follows

|R(fi, θ[i], θ
′[i], x′)| ≤

∫ 1

0

∥∥∇θ[i]fi(sθ′[i] + (1− s)θ[i];x′)−∇θ[i]fi(θ[i];x′)‖F ‖θ′[i]− θ[i]‖Fds

≤ O
(
(R+ δ)1/3H5/2

√
m logm

)
‖θ′[i]− θ[i]‖F .
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Taking a union bound over the i’s, with probability at least 1−O(H)de−Ω(m(R+δ)2/3H), for
all x′ such that ‖x′ − xr‖2 ≤ δ,

`t(f(θ′;x′))− `t(f(θ;x′)) ≥
d∑
i=1

∂`t(f(θ;x′))

∂fi(θ[i];x′)
(fi(θ

′[i];x′)− fi(θ[i];x′))

=

d∑
i=1

∂`t(f(θ;x′))

∂fi(θ[i];x′)

(
〈∇θ[i]fi(θ[i];x′), θ′[i]− θ[i]〉+R(fi, θ[i], θ

′[i], x′)
)

≥
d∑
i=1

〈∂`t(f(θ;x′))

∂fi(θ[i];x′)
∇θ[i]fi(θ[i];x′), θ′[i]− θ[i]〉

−O
(
(R+ δ)1/3H5/2

√
m logm

) d∑
i=1

∣∣∣∣∂`t(f(θ;x′))

∂fi(θ[i];x′)

∣∣∣∣ · ‖θ′[i]− θ[i]‖F
≥ 〈∇θ`t(f(θ;x′)), θ′ − θ〉 −O

(
(R+ δ)1/3H5/2

√
m logm

)
L
√
dR.

We take δ = R, and by our choice of R, the condition R+ δ ≤ c
H6 log3m

is satisfied. Taking

a union over bound all points in the δ-net, the above inequality holds for all x ∈ Sp with
probability at least

1− dO(H)O(1/R)pe−Ω(mR2/3H) = 1−O(H)e−Ω(mR2/3H)+p log(O(1/R))+log d

= 1−O(H)e−Ω(mR2/3H),

where the last inequality is due to our choice of m. This applies to the gradient bound too,
i.e.

‖∇θ[i]fi(θ[i];x)‖F = O(H
√
m), ∀i ∈ [d], (D.3)

holds for any θ ∈ B(R) and any x ∈ Sp with the same failure probability.

Proof [Proof of Lemma 20] Given that the identical conditions of Lemma 19 hold, then with

probability at least 1−O(H)e−Ω(mR2/3H) over the randomness of θ1, `t is εnc-nearly convex
with εnc = O(R4/3H5/2

√
m logmL

√
d), and ‖∇θ[i]fi(θ[i];x)‖F ≤ O(H

√
m) according to

(D.3) for all i ∈ [d], x ∈ Sp, θ ∈ B(R). Since the decision set is B(R), its radius in Frobenius
norm is at most R

√
d. We can bound the gradient norm as follows, for all x ∈ Sp,

‖∇θ`t(f(θ;x))‖2F =
d∑
i=1

‖∇θ[i]`t(fi(θ[i];x))‖2F

=
d∑
i=1

∣∣∣∣∂`t(f(θ;x))

∂fi(θ[i];x)

∣∣∣∣2 · ‖∇θ[i]fi(θ[i];x)‖2F

≤ L2 max
i
‖∇θ[i]fi(θ[i];x)‖2F ≤ O(L2H2m).

By Corollary 11, the regret is bounded by

3R
√
dG
√
T + εT ≤ O(RLH

√
dmT ) +O(R4/3H5/2TL

√
dm logm) .

which concludes the proof.
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D.1. Auxiliary Lemmas

Lemma 21 For m ≥ Ω(p log(1/R)+log(d/δ)

R2/3H
), and R = O( 1

H6 log3m
), with probability at least

1 − δ over the randomness of initialization, for all x ∈ Sp and all i ∈ [d], |fi(θ1[i];x)| ≤

O

(√
log d

δ +
√
p log 1

R

)
.

Proof As in the proof of Lemma 19, we consider an ε-net consisting of O(1/ε)p points
over the unit sphere in dimension p, and fix xr in the ε-net. Let i ∈ [d], and define
Bi(R) = {θ[i] : ‖θ[i] − θ1[i]‖2 ≤ R}. Let fhi (θ[i];x) denote output at the h-th layer of the
network after activation, with weights θ[i] and input x.

By Lemma A.4 in Gao et al. (2019), if R = O(1), with probability 1 − O(H)e−Ω(m/H)

over random initialization, for any x′ ∈ Sp such that ‖xr − x′‖2 ≤ ε, and any θ[i] ∈ Bi(R),
in particular θ1[i], there exists θ̃[i] ∈ Bi(R+O(ε)) such that

fHi (θ̃[i];xr) = fHi (θ1[i];x′).

We first decompose the output of the neural net as follows,

|fi(θ1[i];x′)| = |a>fHi (θ1[i];x′)| = |a>fHi (θ̃[i];xr)|
≤ |a>(fHi (θ̃[i];xr)− fHi (θ1[i];xr))|+ |a>fHi (θ1[i];xr))|.

Note that since a ∼ N (0, Im), for any fixed vector v, we have a>v ∼ N (0, ‖v‖22). By
Hoeffding’s inequality, for all c ≥ 0

P[|a>v| ≥ c‖v‖] ≤ 2e−
c2

2 .

Now we bound the first term. According to Lemma 8.2 in Allen-Zhu et al. (2019),
for R + O(ε) ≤ c′

H6 log3m
for some sufficiently small c′, with probability at least 1 −

e−Ω(m(R+O(ε))2/3H), ‖fHi (θ̃[i];xr) − fHi (θ1[i];xr)‖2 ≤ c1 · (R + O(ε))H5/2
√

logm for some
constant c1. Under this event, with probability at least 1− δ′,

|a>(fHi (θ̃[i];xr)− fHi (θ1[i];xr))| ≤

√
2 ln

(
2

δ′

)
c1(R+O(ε))H5/2

√
logm

= O

(√
ln

1

δ′
(R+O(ε))H5/2

√
logm

)
.

For the second term, by Lemma A.2 in Gao et al. (2019), with probability at least
1−O(H)e−Ω(m/H) over the randomness of θ1[i], ‖fHi (θ1[i];xr)‖2 ≤ c2 for some constant c2.
Under this event, with probability at least 1− δ′,

|a>fHi (θ1[i];xr))| ≤ O

(√
ln

1

δ′

)
.

We take ε = R, and R = O( 1
H6 log3m

), then the conditions on R and ε are satisfied.
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We set δ′ = δO(R)p

d , with our choice of m and R, O(H)e−Ω(m/H) = e−Ω(m/H), and

e−Ω(mR2/3H) ≤ δ′. Taking a union bound on the mentioned events, with probability at least
1− δ′,

|fi(θ1[i];x′)| ≤ O

(√
ln

1

δ′
RH5/2

√
logm

)
+O

(√
ln

1

δ′

)
= O

(√
ln
d

δ
+

√
p ln

1

R

)
.

Now take a union bound over the ε-net and over the d coordinates, we conclude that for all

x ∈ Sp, for all i ∈ [d] |fi(θ1[i];x)| ≤ O
(√

ln d
δ +

√
p ln 1

R

)
with probability at least

1− dO(1/R)pδ′ = 1− δ.

Lemma 22 For m ≥ Ω(p
3/2(k24H12 log8m+d)3/2

γ8
), and R = O

(
k3 logm
γ
√
m

)
, with probability at

least 1 − O(H + d)e−Ω(log2m) over the randomness of initialization, for all x ∈ Sp and all

θ ∈ B(R), for all i ∈ [d], |fi(θ[i];x)| ≤ O
(
k3(H+

√
p) logm
γ

)
.

Proof Observe that for each i ∈ [d] and any x ∈ Sp, the inequality

|fi(θ[i];x)| ≤ |fi(θ1[i];x)|+ |fi(θ[i];x)− fi(θ1[i];x)|

holds. The choice of m,R satisfies the conditions in Lemma 21, take δ = de−Ω(log2m) and
note that mR2/3H = Ω(log2m). We can use the decomposition in (D.1) to bound the
difference between the neural network output at θ[i] and that at θ1[i].

fi(θ[i];x)− fi(θ1[i];x) =

∫ 1

0

〈
∇θ[i]fi(sθ[i] + (1− s)θ1[i];x), θ[i]− θ1[i]

〉
ds

By Lemma 19, with our choice of m and R, with probability at least 1−O(H)e−Ω(log2m),

‖∇θ[i]fi(sθ[i] + (1− s)θ1[i];x)‖F = O(H
√
m), ∀ s ∈ [0, 1].

Therefore the integral can be bounded as∣∣∣∣∫ 1

0

〈
∇θ[i]fi(sθ[i] + (1− s)θ1[i];x), θ[i]− θ1[i]

〉
ds

∣∣∣∣
≤
∫ 1

0
‖∇θ[i]fi(sθ[i] + (1− s)θ1[i];x)‖F ‖θ[i]− θ1[i]‖Fds

≤ O(RH
√
m).

Combining with Lemma 21, we conclude that

|fi(θ[i];x)| ≤ |fi(θ[i];x)− fi(θ1[i];x)|+ |fi(θ1[i];x)| ≤ O
(
k3(H +

√
p) logm

γ

)
, ∀i ∈ [d]

with probability at least 1−O(H + d)e−Ω(log2m).
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Appendix E. Details and Proofs for Section 4

We provide some additional notations and terms before going ahead with the proofs in this
section.

Dynamics rollout. Before proving the lemmas necessary for the theorem proof, we
rewrite the state xθk by rolling out the dynamics from i = k to i = 1 as follows

xθk = xnat
k +

k−1∑
i=1

Mk
i f(θ; z̄i), x

nat
k =

1∏
j=k−1

Ajx1 +
k−1∑
i=1

i∏
j=k−2

Ajwi, M
k
i =

i+1∏
j=k−1

Aj ·Bi,

and for simplicity ‖x1‖2 ≤W .

Sequential stabilizability. Furthermore, note that Assumption 4 can be relaxed to as-
suming there exists a sequence of linear operators F1:K such that for C1 ≥ 1 and ρ1 ∈ (0, 1)

∀k ∈ [K], n ∈ [1, k),

∥∥∥∥∥
k−n+1∏
i=k

(Ai +BiFi)

∥∥∥∥∥
op

≤ C1 · ρn1 .

This condition is called sequential stabilizability and it reduces to the stable case by taking
the actions u′k = Fkxk + uk, yielding the stable dynamics of (Ak +BkFk, Bk)1:K .
Proof [Proof of Lemma 9] This lemma is shown by reducing it to the interpolation dimen-
sion lemma for deep neural networks, Lemma 6. The class of policies Πdnn(f ; Θ) is at the
same time a hypothesis class of functions of type RK·dx+1 → Rdu , i.e. p = K ·dx+1, d = du.
Observe that the domain is still the unit sphere X = SK·dx+1 given the normalization of
inputs z̄k. Furthermore, the inputs are separated in `2 norm by γ > 0 for γ = 1

2KW+H :

∀k ∈ [K], ‖zk‖22 ≤ K ·W 2 +K2 ≤ K2(W 2 + 1) ≤ 4K2W 2,

assuming W = max(1,W ) since maxk∈[K] ‖wk‖2 ≤ W according to Assumption 3. This
means that

∀j, l ∈ [K], ‖z̄j − z̄l‖22 ≥
(

k

‖zk‖2
− l

‖zl‖2

)
≥ 1

4K2W 2
,

so taking γ = 1
2KW+H satisfies separability and also the condition in Lemma 6. Finally,

the conditions on m,R coincide with those in Lemma 6 for γ = 1
2KW+H and interpolation

dimension K. Hence, according to Lemma 6, the function class Πdnn(f ; Θ), with probability

1 − du · e−Ω(log2m), has interpolation dimension IX ,γ(Πdnn(f ; Θ)) ≥ K. Therefore, by
definition of interpolation dimension, the function class Πdnn(f ; Θ) can interpolate any
dataset of size K, e.g. inputs {z̄k} + k = 1K and labels {u?}Kk=1 for any arbitrary fixed
u?1:K ∈ [−1, 1]K×du . This directly implies that it can output any open-loop control sequence
u∗1:K of length K up to arbitrary precision, including the optimal one.

Proof [Proof of Theorem 7] The proof is very similar to that of Theorem 5. The theorem
conditions are at least as strong as those in Lemma 27, hence we can use Lemma 27 to
claim that Lt(θ) is εnc-nearly convex with εnc = O(LcR

4/3H9/2K6Wdu
√
dxm log3/2m),
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and ‖∇θ[i]fi(θ[i]; z̄tk)‖F ≤ O(H
√
m) for all i ∈ [d], z̄tk ∈ SK·dx+1, θ ∈ B(R; θ1). We first

bound the gradient norm of Lt(θ):

‖∇θLt(f̄(θ))‖2F = ‖
K∑
k=1

du∑
i=1

∂L(θ)

∂fi(θ[i]; z̄tk)
∇θ[i]fi(θ[i]; z̄tk)‖2F

≤
K∑
k=1

du∑
i=1

∣∣∣∣ ∂Lt(θ)
∂fi(θ[i]; z̄tk)

∣∣∣∣2 · ‖∇θ[i]fi(θ[i]; z̄tk)‖2F
≤ O(KL′2c ) max

i,k
‖∇θ[i]fi(θ[i]; z̄tk)‖2F

≤ O(K11L2
cH

6W 2dudxm log2m),

where the second to last inequality is due to Lemma 26 and the last inequality holds because
L′c = O(K5LcH

2W
√
dxdu logm). We can proceed to bound the regret as follows

3R
√
duG
√
T + εncT ≤ O(RLcK

11/2H3Wdu
√
dxm logm

√
T )+

+O(R4/3LcK
6H9/2Wdu

√
dxm log3/2mT )

= Õ(K19/2LcH
4W 2du

√
dx ·
√
T ) + Õ(

K34/3LcH
35/6W 7/3du

√
dx

m1/6
· T )

= Õ(K10LcH
4W 2dud

1/2
x ·
√
T ) + Õ

(
K12LcH

6W 3dud
1/2
x

m1/6
· T

)
.

Lemma 23 The function L(f̄(θ)) is convex in f̄(θ).

Proof The function L(f̄(θ)) is a sum of K functions. For an arbitrary k ∈ [K], note that xθk
is a affine function of f̄(θ) w.r.t. the components f(θ, z̄i), i = 1, . . . ,K. The other argument
is f(θ; z̄k) which is also an affine function of f̄(θ). Hence, both arguments in ck(·, ·), which
is jointly convex in its arguments, are affine in f̄(θ), which means that ck(x

θ
k, f(θ; z̄k)) is

convex in f̄(θ). Since L(f̄(θ)) is defined as the sum over ck(x
θ
k, f(θ; z̄k)), it is also convex

in the argument f̄(θ).

Lemma 24 Under the identical conditions of Lemma 22, the states and actions over an
episode are bounded, maxk ‖uθk‖2 ≤ Du and maxk ‖xθk‖2 ≤ Dx for Du = O(K5H2W

√
dudx logm),

Dx = C1
1−ρ1 · (W +DuC2).

Proof First, note that uθk = f(θ; z̄k) and z̄k ∈ SK·dx+1. Given the output magnitude bound
for the network in Lemma 22, i.e. ‖uθk[i]‖ ≤ O(K3(H +

√
Kdx + 1)(2KW +H) logm) we

have ‖uθk‖2 ≤ O(
√
duK

3(H +
√
Kdx + 1)(2KW +H) logm) = O(K5H2W

√
dudx logm) =

Du. By definition of xnat
k , we have that

‖xnat
k ‖2 ≤W ·

C1

1− ρ1
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Plugging this bound in the expression for xθk, we get

‖xθk‖2 ≤W ·
C1

1− ρ1
+Du ·

k−1∑
i=1

C2 · C1 · ρk−i−1
1 ≤ C1

1− ρ1
· (W +DuC2).

Corollary 25 The cost function ck is L′c-Lipschitz with L′c = Lc ·max{1, Dx +Du}.

Lemma 26 The function L(f̄(θ)) is L-Lipschitz w.r.t. each f(θ; z̄k) for k ∈ [K] with
L = L′c · C2·C1

1−ρ1 , i.e. L = O(K5LcH
2W
√
dxdu logm) under the identical conditions of

Lemma 22.

Proof We use Corollary 25 with L′c to conclude this lemma statement. For any arbitrary
k ∈ [K], denote fk = f(θ; z̄k) and note that in the expression of L(f̄(θ)) we have

∀i < k, ‖∇fkci(x
θ
k, u

θ
k)‖2 = 0,

for i = k, ‖∇fkci(x
θ
k, u

θ
k)‖2 = ‖∇uci(xθk, uθk)‖2 ≤ L′c,

∀i > k, ‖∇fkci(x
θ
k, u

θ
k)‖2 = ‖(M i

k)
>∇xci(xθk)‖2 ≤ ‖M i

k‖op · L′c

Therefore, we conclude that

‖∇fkL‖2 ≤
K∑
i=1

‖∇fkci‖2 ≤ L
′
c ·
∑
i ≥ k

‖M i
k‖op ≤ L′c ·

C2 · C1

1− ρ1
.

Lemma 27 For m ≥ Ω((K25H12dxdu log8m)3/2(2KW+H)8), and R = O
(
K3(2KW+H) logm√

m

)
,

with probability at least 1 − O(H + du)e−Ω(log2m) over the randomness of initialization θ1,
the loss L(θ) = L(f̄(θ)), for any θ ∈ B(R; θ1) and any z̄ ∈ SKdx+1, is εnc-nearly convex
with εnc = O(LcR

4/3H9/2K6Wdu
√
dxm log3/2m).

Proof Since L is convex in f̄ by Lemma 23, we have that

L(f̄(θ′))− L(f̄(θ)) ≥ ∇f̄L(f̄(θ))>(f̄(θ′)− f̄(θ))

=

K∑
k=1

du∑
j=1

∂L
∂fj(θ; z̄k)

(fj(θ
′; z̄k)− fj(θ; z̄k))

Using the linearization trick as in (D.1), we can write

L(f̄(θ′))− L(f̄(θ)) ≥
K∑
k=1

du∑
j=1

∂L
∂fj(θ[j]; z̄k)

(〈∇θ[j]fj(θ[j]; z̄k), θ′[j]− θ[j]〉+R(fj , θ[j], θ
′[j], z̄k)).
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Pulling out the first term in the sum, we have

K∑
k=1

du∑
j=1

∂L
∂fj(θ[j]; z̄k)

〈∇θ[j]fj(θ[j]; z̄k), θ′[j]− θ[j]〉

=

du∑
j=1

〈
K∑
k=1

∂L
∂fj(θ[j]; z̄k)

∇θ[j]fj(θ[j]; z̄k), θ′[j]− θ[j]〉

=

du∑
i=1

〈∇θ[j]L(θ), θ′[j]− θ[j]〉 = 〈∇θL(θ), θ′ − θ〉.

We can use the proof of Lemma 19 to bound the other term as follows,∣∣∣∣∣∣
K∑
k=1

du∑
j=1

∂L
∂fj(θ[j]; z̄k)

R(fj , θ[j], θ
′[j], z̄k)

∣∣∣∣∣∣
≤ O(R1/3H5/2

√
m logm)

K∑
k=1

du∑
j=1

∣∣∣∣ ∂L
∂fj(θ[j]; z̄k)

∣∣∣∣ ‖θ′[j]− θ[j]‖F
≤ O(R4/3H5/2

√
m logm)

K∑
k=1

du∑
j=1

∣∣∣∣ ∂L
∂fj(θ[j]; z̄k)

∣∣∣∣
≤ O(R4/3H5/2KL′c

√
dum logm)

We obtain that by Assumption 4

L(f̄(θ′))− L(f̄(θ)) ≥ 〈∇θL(f̄(θ)), θ′ − θ〉 −O(LcR
4/3H9/2K6Wdu

√
dxm log3/2m),

where L′c = O(K5LcH
2W
√
dxdu logm) by Lemma 26 and Corollary 25.
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