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Abstract
We study online control of an unknown nonlinear dynamical system that is approximated by

a time-invariant linear system with model misspecification. Our study focuses on robustness, a
measure of how much deviation from the assumed linear approximation can be tolerated by a
controller while maintaining finite `2-gain.

A basic methodology to analyze robustness is via the small gain theorem. However, as an
implication of recent lower bounds on adaptive control, this method can only yield robustness that
is exponentially small in the dimension of the system and its parametric uncertainty. The work of
Cusumano and Poolla (1988a) shows that much better robustness can be obtained, but the control
algorithm is inefficient, taking exponential time in the worst case.

In this paper we investigate whether there exists an efficient algorithm with provable robustness
beyond the small gain theorem. We demonstrate that for a fully actuated system, this is indeed
attainable. We give an efficient controller that can tolerate robustness that is polynomial in the
dimension and independent of the parametric uncertainty; furthermore, the controller obtains an
`2-gain whose dimension dependence is near optimal.

1. Introduction

The problem of linear control of linear dynamical systems is well studied and understood. Classical
algorithms such as H2 optimization (which includes LQR and LQG) are known to be optimal in
appropriate stochastic and worst case settings, while robustH∞ control is optimal in the worst case,
assuming quadratic costs. Even though these results can be generalized to nonlinear systems, the
resulting optimal control synthesis requires solving partial differential equations in high dimensional
domains, usually an intractable task. Beyond classical control methods, recent advancements in
the machine learning community gave rise to efficient online control methods based on convex
relaxations that minimize regret in the presence of adversarial perturbations.

In this paper we revisit a natural and well-studied approach of nonlinear control, where the
nonlinear system is approximated by a linear plant with an uncertain (or misspecified) model. We
capture the deviation of the plant dynamics from a linear time invariant system with an adversarial
disturbance term in the system dynamics that can scale with the system state history. The amount
of such deviation that can be tolerated while maintaining system stability constitutes robustness of
the system under a given controller.
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The field of adaptive control addresses the problem of controlling linear (and non-linear) dy-
namical systems with uncertain parameters. Adaptive control algorithms are frequently challenged
on the issues of robustness and transient (finite-time) performance. Here, transient performance is
in contrast with asymptotic performance, and as mentioned before, robustness measures the ability
to tolerate unmodeled dynamics. A number of papers in the 1980s (e.g. Rohrs et al. (1982)) pointed
out a lack of robustness under model misspecification for the classical model reference adaptive
control (MRAC) approach. One can argue that this is related to the absence of transient behavior
guarantees, such as a closed loop `2-gain bound, with good behavior expected only asymptotically,
and this is the motivation for our study.

In this paper, we show that under a fully actuated system, a properly designed adaptive control
algorithm can exhibit a significant degree of robustness to unmodeled dynamics and be compu-
tationally efficient. This is in contrast to a small gain approach to analyzing robustness, where
robustness is guaranteed to be inversely proportional to the `2-gain of the closed loop system, ex-
cluding model misspecification. As recently shown by Chen and Hazan (2021) via a regret lower
bound, it is inevitable that the `2-gain grows exponentially with the system dimension, implying a
vanishing degree of robustness under the small gain theorem.

We show that it is possible to achieve robustness which depends inverse polynomialy on the
system dimension, and independent of its parametric uncertainty, while maintaining an `2-gain that
grows as 2O(d), consistent with the known lower bounds of 2Ω̃(d). Previous work by Cusumano
and Poolla (1988a) gives a very general, yet inefficient algorithm of adaptive control that achieves
constant robustness for both fully actuated and under actuated systems. The algorithm assures
finiteness of the close loop `2-gain, but yields an excessively high `2-gain bounds (as in having
`2-gain that grows doubly exponentially in the dimension, in the same setting).

Our result improves upon previous work in the fully actuated setting, both in terms of computa-
tional efficiency and `2-gain. The controller is based on recent system identification techniques from
non-stochastic control whose main component is active large-magnitude deterministic exploration.
This technique deviates from one of the classical approaches of using least squares for system es-
timation and solving for the optimal controller. Our technique demonstrates how carefully chosen
exploration for system identification can be used to bound the energy required for exploration and
not to activate the system more than necessary, and yet obtain bounded `2-gain up to the known
lower bounds.

1.1. Our contributions

We consider the setting of a linear dynamical system with time-invariant dynamics, together with
model misspecification, as illustrated in Fig. 1.

The system evolves according to the following rule,

xt+1 = Axt +But + ∆t(x1:t) + ft, (1)

where A,B ∈ Rd×d is the (unknown) linear approximation to the system, ut, xt, ft ∈ Rd are the
control, state and adversarial perturbation respectively. We refer to an upper bound on the spectral
norm ofA as the parametric uncertainty. The perturbationwt = ∆t(x1:t) represents the deviation of
the nonlinear system from the nominal system (A,B). The perturbations wt crucially must satisfy
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Figure 1: Diagram of the system, where ∆ represents model misspecification.

the following assumption:
t∑

s=1

‖ws‖22 ≤ h2(
t∑

s=1

‖xs‖22). (2)

The parameter h is a measure of the robustness of the system, and is the main object of study. The
larger h is, the more model misspecification can be accommodated by the controller. Our goal is
to study the limits of robustness with reasonable transient performance. We use `2-gain, a quantity
widely studied in classical control theory, as our performance measure. The `2-gain of a closed-loop
system with control algorithm A in the feedback loop is defined as

`2-gain(A) = max
ft

‖x1:T ‖2
‖f0:T−1‖2

, (3)

where x1:T , f0:T−1 ∈ RdT are concatenations of x1, . . . , xt, and f0, . . . , fT−1, respectively. This
notion is closely related to the competitive ratio of the control algorithm A, as we show in App. C.
With this notation, we can formally state our main question:

Is it possible to design efficient control methods that achieve robustness beyond the small gain
theorem, while having `2-gain with near-optimal 1 dependence on the system dimension?

Our study initiates an answer to this question from both lower and upper bound perspectives.
In terms of upper bounds, we consider the case of a fully actuated system, and show that in this
important special case, constant robustness and near-optimal `2-gain are possible. 2

• We give an efficient algorithm that is able to control the system with robustness h = Ω( 1√
d
),

where d is the system dimension. This is independent of the parametric uncertainty.

• In addition, we show that under parametric uncertainty M , this algorithm achieves finite
`2-gain of 2Õ(d logM), where the dependence on system dimension is near-optimal given the
lower bound of 2Ω(d) in Chen and Hazan (2021).

We also consider the limits of finite `2-gain and robust control. Clearly, if the systemA,B is not
stabilizable, then one cannot obtain any lower bound on the robustness regardless of what control

1. Here and elsewhere, near optimal means up to constants in the exponent.
2. Obtaining similar, or even partial, results in the general under-actuated case is an exciting, important, and potentially

difficult open problem, see the conclusions section.
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method is used. The distance of the system A,B from being stabilizable is thus an upper bound on
the robustness, and we provide a proof for completeness in App. B.

For our main results, we use an active explore-then-commit method for system identification
and a doubling strategy to handle unknown disturbance levels. As a supplementary result, we also
study system identification using the more common online least squares method, and prove that it
gives constant robustness and finite `2-gain bounds for one-dimensional systems in App. D.

1.2. Related work

Adaptive Control. The most relevant field to our work is adaptive control, see for example the
book (Ioannou and Sun, 2012) and survey by Tao (2014). This field has addressed the problem of
controlling a linear dynamical system with uncertain parameters, providing, in the 70s, guarantees
of asymptotic optimality of adaptive control algorithms. However, reports of lack of robustness
of such algorithms to unmodeled dynamics (as in the Rohrs et al. (1982) example) have emerged.
One can argue that this lack of robustness was due to poor noise rejection transient performance of
such controllers, which can be measured in terms of `2 induced norm (gain) of the overall system.
The general task of designing adaptive controllers with finite closed loop `2-gain was solved by
Cusumano and Poolla (1988a), but the `2-gain bounds obtained there grow very fast with the size of
parameter uncertainty, and are therefore only good to guarantee a negligible amount of robustness. It
has been confirmed by Megretski and Rantzer (2002/2003) that even in the case of one dimensional
linear models, the minimal achievable `2 gain grows very fast with the size of parameter uncertainty.

Nonlinear Control. Recent research has studied provable guarantees in various complementary
(but incomparable) models for nonlinear control. These include planning regret in nonlinear control
Agarwal et al. (2021), adaptive nonlinear control under linearly-parameterized uncertainty Boffi
et al. (2021), online model-based control with access to non-convex planning oracles Kakade et al.
(2020), control with nonlinear observation models Mhammedi et al. (2020), system identification
for nonlinear systems Mania et al. (2020) and nonlinear model-predictive control with feedback
controllers Sinha et al. (2021).

Robustness and `2-gain in Control Robust control is concerned with the ability of a controller
to tolerate uncertainty in system parameters, including unmodeled dynamics present in nonlinear
systems. This field has been studied for many decades, see for example (Zhou et al., 1996) for a
survey. One fundamental method for measuring robustness is certifying stability of the closed-loop
system under non-parametric uncertainty via the small gain thoerem by Zames (1966), where stabil-
ity is implied by finite `2-gain. The achievability of finite `2-gains for systems with unknown level
of disturbance has been studied in control theory. Cusumano and Poolla (1988b) characterize the
misspecification, or non-parametric uncertainty, tolerable for finite `2-gain. Megretski and Rantzer
(2002/2003) gives a lower bound on the closed loop `2-gain of adaptive controllers that achieve fi-
nite `2-gain for all systems with bounded spectral norm. However, the systems studied in this paper
do not contain any model misspecification.

Since the small gain theorem is known to be pessimistic, several alternative approaches have
been proposed, including positivity theory and other methods of exploiting phase information of the
system, constructing parameter-dependent Lyapunov functions, and using other notions of stability
such as absolute stability, see Bernstein and Haddad (1992) for a survey.
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Competitive Analysis for Control For a given controller, its `2-gain is closely related to the
competitive ratio, which is a quantity more often studied in the computer science community, see
next section for details. Yu et al. (2020) gives a control algorithm with constant competitive ratio
for the setting of delayed feedback and imperfect future disturbance predictions. Shi et al. (2020)
proposes algorithms whose competitive ratios are dimension-free for the setting of optimization
with memory, with connections to control under a known, input-disturbed system and adversarial
disturbances. More recently, Goel and Hassibi (2021) give an algorithm with optimal competitive
ratio for known LTI systems and known quadratic costs, without misspecification.

System Identification for Linear Dynamical Systems. For an LDS with stochastic perturbations,
the least squares method can be used to identify the dynamics in the partially observable and fully
observable settings (Oymak and Ozay, 2019; Simchowitz et al., 2018; Sarkar and Rakhlin, 2019;
Faradonbeh et al., 2019). However, least squares can lead to inconsistent solutions under adversarial
disturbances, such as the model misspecification component in the system. The algorithms by
Simchowitz et al. (2019) and Ghai et al. (2020) tolerate adversarial disturbances, but the guarantees
only hold for stable or marginally stable systems. If the adversarial disturbances are bounded, Hazan
et al. (2020) and Chen and Hazan (2021) give system identification algorithms for any unknown
system, stable or not, with and without knowledge of a stabilizing controller, respectively. These
techniques arose from recent results on nonstochastic control, such as works by Agarwal et al.
(2019) and Simchowitz et al. (2020), for a comprehensive survey, see lecture notes by Hazan (2021).

1.3. Structure of the paper

In the next section we give a few preliminaries and definitions to precisely define our setting and
problem. In Sec. 3 we give our main result: an efficient method with Ω( 1√

d
) robustness and `2-gain

of 2Õ(d logM) under unknown disturbance levels. We sketch out the analysis in Sec. 4.
Due to space constraints, significant technical material appears in the appendix App. A provides

additional background on the small gain approach to robust control. In App. B and App. C, we ex-
plore the limits of robustness of any controller and clarify the relationship between the performance
metric `2-gain and the competitive ratio, respectively. In App. D we give an optimal result limited
to the one-dimensional setting, where the `2-gain bounds are tight in the parametric uncertainty. In
App. E we include proofs for Sec. 3, and in App. F we provide a complete analysis of an algorithm
analogous to that of Cusumano and Poolla (1988a).

2. Preliminaries

Notation. We use the Õ notation to hide constant and logarithmic terms in the relevant parameters.
We use ‖ · ‖2 to denote the spectral norm for matrices, and the Euclidean norm for vectors. We use
xs:t ∈ Rd(t−s+1) to denote the concatenation of xs, xs+1, . . . , xt, and similar notations are used for
f , w, z.

We make the assumptions on the model misspecification component and the disturbances in
Section 1.1 formal.
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Assumption 1 We treat the model misspecification component of the system, ws, as an adversarial
disturbance sequence. They are arbitrary functions of past states such that for all t:3

‖w1:t‖2 ≤ h‖x1:t‖2.

The disturbance ft in the system is arbitrary, and let zt = wt + ft. Without loss of generality, let
w0 = x0 = u0 = 0.

Further, we assume the system is bounded and fully actuated.

Assumption 2 The magnitude of the dynamicsA,B are bounded by a known constant ‖A‖2, ‖B‖2 ≤ M ,
where M ≥ 1. B’s minimum singular value is also lower bounded as σmin(B) > L, where
0 < L ≤ 1.

`2-gain and Competitive Ratio. The competitive ratio of a controller is a concept that is closely
related to `2-gain, but is more widely studied in the machine learning community. Informally,
for any sequence of cost functions, the competitive ratio is the ratio between the cost of a given
controller and the cost of the optimal controller, which has access to the disturbances f0:T−1 a
priori. Importantly, the notion of competitive ratio is counterfactual: it allows for different state
trajectories x1:T as a function of the control inputs. Under some assumptions that our algorithm
satisfies, `2-gain bounds can be converted to competitive ratio bounds (see Sec. C). We choose to
present our results in terms of `2-gain for simplicity.

3. Main Algorithm and Results

In this section we describe our algorithm. The main algorithm, Alg.1, is run in epochs, each with a
proposed upper bound q on the disturbance magnitude ‖f0:T−1‖2. A new epoch starts whenever the
controller implicitly discovers that q is not sufficiently large and increases the upper bound. While
the disturbances ft are not directly observed, with a valid upper bound q, the algorithm guarantees
a bounded state expansion and bounded estimates of (A,B). When these conditions are broken, we
deduce that the bound on ‖f0:T−1‖2 was incorrect and restart the system identification procedure,
appropriately scaling up our upper bound q .
The algorithm explores with large controls along the standard basis. If the upper bound q indeed
exceeds ‖f0:T−1‖2, the algorithm is guaranteed to find a stabilizing controller. By using the standard
basis vectors as the exploration set, the algorithm attains robustness depending on

√
d using O(d)

controls. In contrast, an inefficient version of the algorithm achieves dimension-free robustness,
but uses an ε-net for exploration, resulting in an exponential number of large controls for system
estimation. The alternate variant and analysis can be found in App. E.

The theorem below presents the main guarantee of our algorithm.

Theorem 1 For h ≤ 1
12
√
d

, there exists ε, α such that Alg. 1 has `2-gain(A) ≤ (Md
L )O(d).

3. Notice that wt can depend on the actual trajectory of states, and not only their magnitude. This is important to capture
miss-specification of the dynamics.
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Algorithm 1: `2-gain algorithm
Input: System upper bound M , control matrix singular value lower bound L, system

identification parameter ε, threshold parameter α.
1 Set q = 0,K = 0.
2 while t ≤ T do
3 Observe xt.
4 if ‖x1:t‖2 > αq then
5 Update q = ‖x1:t‖2.
6 Call Alg. 2 with parameters (q,M,L, ε, α), obtain updated K and budget q.
7 else
8 Execute ut = −Kxt.
9 t← t+ 1

10 end
11 end

Algorithm 2: Adversarial System ID on Budget
Input: Disturbance budget q, system upper bound M , control matrix singular value lower

bound L, system identification parameter ε, threshold parameter α.
1 Call Alg. 3 with parameters (q,M,L, ε, α), obtain estimator B̂ and updated budget q. Suppose

the system evolves to time t′ = t+ d.
2 Set q′ = 42dM2dε−dq.
3 for i = 0, 1, . . . , 2d− 1 do
4 Observe xt′+i.
5 if ‖x1:t′+i‖2 > αq then
6 Restart SysID from Line 2 with q = ‖x1:t′+i‖2.
7 end
8 if i is even then
9 Play ut′+i = ξi/2B̂

−1ei/2+1, ξi/2 = 43i/2M3i/2+2q′

εi/2+1 .
10 else
11 Play ut′+i = 0.
12 end
13 end
14 Observe xt′+2d, compute

Â = [
xt′+2

ξ0
· · · xt

′+2d

ξd−1
] .

if ‖Â‖2 > 2M then
15 Restart SysID from Line 2 with q = ‖x1:t′+2d‖2.
16 end
17 Return q,K = B̂−1Â
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Algorithm 3: Adversarial Control Matrix ID on Budget
Input: Disturbance budget q, system upper bound M , control matrix singular value lower

bound L, system identification parameter ε, threshold parameter α.
1 for i = 0, 1, . . . , d− 1 do
2 Observe xt+i.
3 if ‖x1:t+i‖2 > αq then
4 Restart SysID with q = ‖x1:t+i‖2.
5 end
6 Play ut+i = λiei+1, λi = 42iM2i+1q

εi+1 .
7 end
8 Observe xt+d, compute

B̂ = [
xt+1

λ0
· · · xt+d

λd−1
].

if ‖x1:t+d‖2 > αqk or σmin(B̂) < L/2 then
9 Restart SysID with q = ‖x1:t+d‖2.

10 end
11 Return q, B̂

4. Analysis

The algorithm has three components: exploration to estimate B, exploration to estimate A, and
controlling the system with linear controller K = B̂−1Â. The parameter α serves as a relative
upper bound, where the state energy ‖x1:T ‖2 is guaranteed not to surpass αq if q is a true upper
bound on ‖f0:T−1‖2. We first analyze the case if the upper bound on the disturbance magnitude is
correct and ‖f0:T−1‖2 ≤ q. In this case, the algorithm is designed with a suitable threshold α such
that a new epoch will not be started and we are guaranteed to obtain a stabilizing controller. Note
that in both exploration stages, the state can grow exponentially, so exploratory controls must also
grow to keep up.

Epoch Notation. We define epochs in terms of rounds of system identification. In particular, for
the kth epoch, sk denotes the iteration number t on the kth call to the system identification procedure
Alg. 2, and ek = min(sk+1 − 1, T ) is the iteration number of the end of the epoch. As such, within
an epoch, q is fixed, so we denote qk = ‖x1:sk‖2 the value of q within epoch k.

Identifying B (see App. E.2). The first step involves identifying the control matrix using Alg. 3.
The following lemma shows that the control identification process will produce an accurate estimate
of B in the spectral norm with singly-exponential growth in the state energy. Because our final
controller is K = B̂−1Â, we also bound the distance of BB̂−1 from identity in order to properly
stabilize the system.

Lemma 2 Suppose ‖f0:T−1‖2 ≤ qk and α ≥ 42dM2dε−d, then running Alg. 3 with ε ≤ L
12
√
d

produces B̂ such that ‖B̂−B‖2 ≤ 3ε
√
d and ‖BB̂−1−I‖2 ≤ 1

2 , with ‖x1:sk+d‖2 ≤ 42dM2dqkε
−d.

The algorithm works by probing the system with scaled standard basis vectors. With sufficiently
large scaling, xt+1 = Axt + But + zt ≈ But. This allows us to estimate B one column at a
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time. Arbitrarily large probing controls can yield an arbitrarily accurate estimate of B, though the
magnitude of such controls will factor into the resultant `2-gain. This accuracy-gain trade off is
balanced deeper in the analysis.

Identifying A (see App. E.3). Once we have an accurate estimate of B, we use Alg. 2 to produce
an estimate Â that is O(h) accurate in each of the standard basis directions, again with a singly
exponential state energy growth.

Lemma 3 Suppose ‖f0:T−1‖2 ≤ qk and α > R = (4M)5dε−2d, then Alg. 2 produces Â such that

max
i∈[d]
‖(A− Â)ei‖2 ≤

28εM
√
d

L
+ 3h ,

with ‖x1:t′+2N‖2 ≤ Rqk.

Identification ofA in Alg. 2 works by applying controls ut = ξB̂−1vt every other iteration, where vt
is a standard basis vector and ξ is a large constant such that xt+1 ≈ Axt+ξvt+zt ≈ ξvt. One more
time evolution with zero control gives xt+2 = Axt+1 + zt+1 ≈ ξAvt + zt+1. By Assumption 1,
‖zt+1‖2 ≤ h‖x1:t+1‖2 + ‖f0:t+1‖2 = O(hξ + q). As a result, we have ‖xt+2

ξ − Avt‖2 = O(h).

By definition of Â in Line 14, we also have ‖xt+2

ξ − Âvt‖2 = O(h), so ‖(A − Â)vt‖2 = O(h).

Exploratory controls are preconditioned with B̂−1 to achieve robustness independent of σmin(B).
By exploring with the standard basis, we assure that each row of Â is accurate to O(h), so ‖A−

Â‖2 ≤ ‖A− Â‖F ≤ h
√
d. By bounding the spectral norm of the estimation error loosely through a

bound on the Frobenius norm, we only produce an accurate estimate of A for h = Ω(1/
√
d). With

exploration complete, we shift to stabilizing the system.

Stabilizing the system (see App. E.4). The system is subsequently stabilized by linear controller
K = B̂−1Â. By controlling the accuracy of Â and B̂, we guarantee the closed loop system satisfies
‖A−BK‖2 < 1

2 via the following simple technical lemma:

Lemma 4 Suppose ‖f0:T−1‖2 ≤ qk, α ≥ 42dM2dε−d, with appropriate choice of ε the resultant
controller K satisfies ‖A−BK‖2 ≤ 1

2 .

Now, with a stable linear system, we can bound the remaining cost of using this stabilizing
controller. In the below theorem t∗ represents a time such that the controller plays a stabilizing
linear controller for the remainder of the time horizon. In particular, we can view t∗ as the last
iteration of exploration.

Lemma 5 If ‖f0:T−1‖2 ≤ qk, and let t∗ be such that ut = −Kxt for t ≥ t∗ ≥ sk, with ‖A −
BK‖2 ≤ 1/2, then for h ≤ 1

6 ,

‖x1:ek‖
2
2 ≤

18‖x1:t∗‖22 + 72q2
k

7
.

This follows via induction arguments involving unrolling the linear dynamics. We can then obtain
the following end-to-end bound by bounding ‖x1:t‖22 in terms of qk, plugging in ‖x1:t∗‖2 ≤ Rqk
via the exploration analysis of Lem. 3.
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Lemma 6 Suppose h ≤ 1
12
√
d

, and ε = L
150Md , then if ‖f0:T−1‖2 ≤ qk and α =

(
414M8d2

L2

)d, the
running Alg. 1 has states bounded by

‖x1:ek‖2 ≤ αqk .

The restart mechanism of the algorithm eventually assures us that qk ≈ ‖f1:T−1‖2 up to a
multiplicative factor, providing an `2-gain bound.

Handling changing disturbance budget (see App. E.7). We now sketch out the extension to
unknown disturbance magnitude. In Alg 1, q is the proposed upper bound on ‖f0:T−1‖2. There are
a variety of conditions for failure in the algorithms (i.e. where we have proof that q was not a valid
upper bound) which trigger re-exploration and the start of a new epoch. If q is indeed an upper
bound, the above steps all will work without triggering a failure and we have ‖x1:T ‖2 ≤ αq for
some constant α. On the other hand, when a failure is detected, it is proof that ‖f0:T−1‖2 > q. We
can relate the penultimate budget q′ to the final budget q by bounding the state growth from a single
time evolution where budget is exceeded. Combining the upper bound of ‖x1:T ‖2 and lower bound
on ‖f0:T−1‖2 produces an `2-gain bound.

5. Conclusions

We have shown that for fully actuated systems, it is possible to control a misspecified LDS with
robustness that is independent of the system magnitude, going beyond the small gain theorem, with
an efficient algorithm. In addition, our control algorithm has near-optimal dimension dependence
in terms of `2-gain, improving upon the classical algorithm of Cusumano and Poolla (1988b).

The most important open question is to continue this investigation to the much more general
case of underactuated systems. Are efficient and optimally-robust algorithms possible? Can an
efficient algorithm can be derived to obtain constant robustness, independent of the dimension, and
with a tighter bound on `2-gain in terms of the system magnitude?

Other future directions include systems with partial observability and degenerate control matri-
ces. It is also interesting to explore whether the same result can be obtained when the system inputs,
not only the states, are subject to noise and misspecification.
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Appendix A. Small Gain Theorem

The Small Gain Theorem (Zames, 1966) provides a guarantee on the stability on an interconnection
of two stable systems, denoted S∆ and depicted in Fig. 2. System S takes as input (f, w) and
produces output (x, y) and ∆ takes as input x and produces output w. The joint system S∆ can be
viewed as taking input f and producing output y. If the `2-gain of S is at most γ, the Small Gain
Theorem guarantees stability of S∆ so long as the `2-gain of ∆ is upper bounded by 1

γ .
The Small Gain Theorem is an important tool in understanding robustness. For a give closed-

loop controlled system S, the coupled system ∆ can viewed as model misspecification. The Small
Gain Theorem gives a prescription for robust control: design a controller such that the closed-loop
system S has small `2-gain and robustness follows.

While this methodology is appealing, unfortunately in our setting, such an approach yields quite
weak bounds. In particular, recent lower bounds for adaptive control without model misspecification
scales with the parametric uncertainty asMΩ(d). As such, the best robustness we can hope for using
a small-gain approach is on the order of 1

Md , vanishing as the parametric uncertainty grows. In con-
trast, the algorithms in this work more directly tackle model misspecification, attaining robustness
independent of the parametric uncertainty, albeit only for fully actuated systems.

S

- -

∆ �

-

f y

xw

Figure 2: Diagram of an interconnected system S∆

For completeness, we provide a version of the Small Gain Theorem.

Theorem 7 (Small Gain) If `2-gain of S is not larger than γ and `2-gain of ∆ is not larger than
1
γ , then the `2-gain of S∆ is not larger than γ.

Proof By the provided gain bounds, there exists constants C1, C2 such that

∞∑
t=1

(
γ2(‖ft‖22 + ‖wt‖22)− (‖xt‖2 + ‖yt‖22)

)
> C1 (4)

∞∑
t=1

( 1

γ2
‖xt‖22 − ‖wt‖2

)
> C2 (5)
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Scaling (5) by γ2 and adding to (4), we have

∞∑
t=1

(
γ2‖ft‖22 − ‖yt‖22

)
> γ2C2 + C1 .

Thus, the `2-gain of S∆ is not larger than γ.

Appendix B. Limits on robustness in online control

In this subsection we give a simple example exhibiting the limitation of robustness, and in particular
showing that in the case of an unstabilizable system, it is impossible to obtain constant robustness.

Definition 8 (Strong Controllability) Given a linear time-invariant dynamical system (A,B), let
Ck denote

Ck = [B AB A2B · · ·Ak−1B] ∈ Rd×kd.

Then (A,B) is (k, κ) strongly controllable if Ck has full row-rank, and ‖(CkC>k )−1‖ ≤ κ.

Lemma 9 In general, a system with strong controllability (k, κ) cannot be controlled with robust-
ness larger than 1√

κ
.

Proof
Consider the two dimensional system given by the matrices

Aε =

[
2 ε
0 2

]
, B =

[
0
1

]
The Kalman matrix for this system is given by

Q = [B AB] =

[
0 ε
1 2

]
For ε > 0, this matrix is full rank, and the system is strongly controllable with parameters (2, O( 1

ε2
)).

However, for ε = 0, it can be seen that the system becomes uncontrollable even without any noise,
since the first coordinate has no control which can cancel it, i.e. xt+1(1) = 2xt(1) + zt(1).

For adversarial noise with robustness of ε, we can convert the system Aε to A0, rendering it
uncontrollable. The noise sequence will simply be

wt =

[
0 −ε
0 0

]
xt.

This happens with parameter h which is ε = 1√
κ

.
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Appendix C. Relating competitive ratio to `2gain

As discussed, the notion of `2-gain has a very similiar spirit to a competitive ratio. Here we relate
the `2-gain to the competitive ratio concretely for quadratic costs. We begin with a formal definition.

Definition 10 (Competitive Ratio) Consider a sequence of cost functions ct(xt, ut). Let JT (A, f0:T−1)
denote the cost of controllerA given the disturbance sequence f0:T−1, and let OPT(f0:T−1) denote
the cost of the offline optimal controller with full knowledge of f0:T−1. Both costs are worst case
under any model misspecification that satisfies (2) subject to a fixed f0:T−1. The competitive ratio
of a control algorithm A, for w1:T−1 satisfying Assumption 1 is defined as:

C(A) = max
f0:T−1

JT (A, f0:T−1)

OPT(f0:T−1)
.

The `2-gain bounds the ratio between ‖x1:T ‖2 and ‖f0:T−1‖2, while under the time-invariant
cost function ct(x, u) = ‖x‖22 +‖u‖22, the competitive ratio bounds the ratio of ‖x1:T ‖22 +‖u1:T ‖22 to
OPT(f0:T−1). Here we show that OPT(f0:T−1) = Θ(‖f0:T−1‖22), treating M and L as constants.
Assuming ‖u1:T ‖2 is bounded by a constant multiple of ‖x1:T ‖2, then C(A) = Θ(`2-gain(A)2).

Theorem 11 Under the time-invariant cost function ct(x, u) = ‖x‖22 + ‖u‖22, for any system
satisfying Assumptions 1 and 2, with h < 1/2,

‖f0:T−1‖22
9M2

≤ OPT(f0:T−1) ≤ 8M2‖f0:T−1‖22
L2

.

Proof We start by bounding ‖ft‖22 using (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2).

‖ft‖22 = ‖xt+1 −Axt −But − wt‖22
≤ 4M2‖xt‖22 + 4‖xt+1‖22 + 4M2‖ut‖22 + 4‖wt‖22

Summing over f2
t , we have

‖f0:T−1‖22 =
T−1∑
t=0

‖ft‖22 ≤ 4
T−1∑
t=0

(M2‖xt‖22 + ‖xt+1‖22 +M2‖ut‖22 + ‖wt‖22)

≤ 8M2(‖x1:T ‖22 + ‖u1:T−1‖22) + 4‖w1:t‖22
≤ (8M2 + 4h2)(‖x1:T ‖22 + ‖u1:T−1‖22) .

The lower bound follows after applying 2h < 1 ≤M .
For the upper bound, consider ut = −B−1Axt, which produces closed loop dynamics xt+1 =

wt + ft and hence ‖xt+1‖22 ≤ 2‖wt‖22 + 2‖ft‖22. Summing over t, we have

‖x1:T ‖22 ≤ 2‖f0:T−1‖22 + 2‖w0:T−1‖22 ≤ 2‖f0:T−1‖22 + 2h2‖x0:T−1‖22 .

Noting that x0 = 0, we have ‖x1:T ‖22 ≤
2‖f0:T−1‖22

(1−2h2)
≤ 4‖f0:T−1‖22 .

Noting that ‖ut‖2 ≤ M
L ‖xt‖2, we have

‖x1:T ‖22 + ‖u1:T−1‖22 ≤
2M2‖x1:T ‖22

L2
≤ 8M2‖f0:T−1‖22

L2
.
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Remark 12 Dependence on M2 is required in Theorem 11. Consider the system xt+1 = Mxt +
ut + ft with x1 = 1, ut = 0 for all t and ft alternates between −M and 1. As a result, xt oscillates
between 1 and 0 for an average cost of 1

2 , while f2
t is on average M2+1

2 .

Appendix D. One Dimensional Analysis

In this section,we show that for a simple one dimensional system constant robustness can be achieved
using certainty equivalence control (i.e online least squares system identification) with tight depen-
dence on the system uncertainty radius. We consider the following system

xt+1 = axt + ut + wt + ft, |w0:t| ≤ h|x0:t| ∀ t ∈ Z+, x0 = 0, (6)

where wt and ft are similarly defined as in Section 1.1.
In this section, we use the notation γ : [−M,M ] → [1,∞) for some function (preferably, as

small as possible), such that the following inequalities hold

|x:t| ≤ γ(a)|f:t| ∀ t ∈ Z+ (7)

for an upper bound on the `2-gain.

D.1. Lower Bound

First, we formulate (and prove) a stronger version of the result of Megretski and Rantzer (2002/2003),
for the case h = 0 (which means that w ≡ 0 in (6)).

Theorem 13 If a control algorithm A has finite `2-gain bounds specified by γ : [−M,M ] →
[0,∞) with h = 0, for all a ∈ [−M,M ] and ft, wt, xt ∈ R satisfying (6), then γ(a) ≥ max{|a −
M |, |a+M |}/8 ≥M/8 for all a ∈ [−M,M ], and therefore `2-gain(A) ≥M/8.

The result of Thm. 13 suggests that the closed loop `2-gain, no matter which adaptive controller
is used, if it obtains finite `2-gain for all systems satisfying the parametric uncertainty, must grow
linearly with the parametric uncertainty size for all values of the uncertain parameter. In particular,
this makes it impossible to sacrifice performance at some values of a to gain much improvement at
other values of a. Given signals x, f satisfying equations (6) with wt ≡ 0, define ξt, pt, qt, rt by

ξt = xt+1 − ut, pt =

t−1∑
s=0

x2
s, qt =

t−1∑
s=0

xs(xs+1 − us), rt =

t−1∑
s=0

ξ2
s .

The interaction between control (ut) and noise (ft) can be viewed as a game (between u and f ), in
which ut is decided, based on knowing all xs with s ≤ t (and, of course, all us with s < t), to keep
the inequality

γ(a)2
[
pta

2 − 2qta+ rt
]
≥ pt (8)

satisfied for all a ∈ [−M,M ] and all t ∈ Z+, while ft is decided based on knowing all us and xs
with s ≤ t (and all fs with s < t), in an effort to violate the inequality from (8) at some time t ∈ Z+

and some a ∈ [−M,M ].
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In this proof, we work with the normalized versions δt, νt, zt of ut, ξt, xt, as well as additional
signals βt, θt. Let t0 be the smallest t ∈ Z+ such that pt > 0. For t ≥ t0 let

βt =
qt
pt
, θt =

rtpt − q2
t

p2
t

, zt =
xt√
pt
, δt =

ut + βtxt√
pt + x2

t

, νt =
ξt − βtxt√
pt + x2

t

.

Since xt, ξt, ut, pt, qt, rt satisfy equations

xt+1 = ξt + ut, pt+1 = pt + x2
t , qt+1 = qt + xtξt, rt+1 = rt + ξ2

t ,

δt, νt, zt, βt, θt, for t ≥ t0, satisfy

zt+1 = νt + δt, βt+1 = βt +
ztνt√
1 + z2

t

, θt+1 =
θt + ν2

t

1 + z2
t

. (9)

The game between u and f can now be interpreted as the game between δ and ν, defined by the
dynamical equations (9) with the state yt = (zt, βt, θt), where the normalized control effort δt, for
t ≥ t0, is best constructed as a function δt = St(yt) of the current state, to keep the inequality

γ(a)2
[
(a− βt)2 + θt

]
≥ 1 (10)

satisfied for all a ∈ [−M,M ] and all t ≥ t0, while νt, for t ≥ t0, is best constructed as a function
νt = Dt(yt, δt) of current normalized control effort and the current state, in an effort to violate the
inequality from (10) at some time t ≥ t0 and some a ∈ [−M,M ].

Claim 1: If a control algorithm δt = St(yt) maintains (10) for a = a0 and for all t ≥ t0 then it
also satisfies

γ(a0)2
[
(a0 − βt)2 + θt

]
≥ 1 + z2

t (11)

for all t ≥ t0. Indeed, with νt = (a0−βt)zt√
1+z2t

we have

γ(a0)2
[
(a0 − βt+1)2 + θt+1

]
= γ(a0)2

∣∣∣∣∣a0 − βt −
ztνt√
1 + z2

t

∣∣∣∣∣
2

+
θt + ν2

t

1 + z2
t

 = γ(a0)2 (a0 − βt)2 + θt
1 + z2

t

,

hence (11) must be satisfied to maintain (10).

Claim 2: If a control algorithm δt = St(yt) maintains (11) for all t ≥ t0 then it also satisfies

γ(a0)2

[
θt

1 + z2
t

+
(a0 − βt)2

z2
t

]
− 1 ≥

∣∣∣∣∣δt +
(a0 − βt)

√
1 + z2

t

zt

∣∣∣∣∣
2

(12)

whenever zt 6= 0, for all t ≥ t0. Indeed, when zt 6= 0, with νt =
(a0−βt)

√
1+z2t

zt
we have

γ(a0)2
[
(a0 − βt+1)2 + θt+1

]
−1−z2

t+1 = γ(a0)2

[
θt

1 + z2
t

+
(a0 − βt)2

z2
t

]
−1−

∣∣∣∣∣δt +
(a0 − βt)

√
1 + z2

t

zt

∣∣∣∣∣
2

,

hence (12) must be satisfied to maintain (11).

To continue the proof, take any point a0 ∈ [−M,M ], and let γ0 = γ(a0) ≥ 1. We aim to show that,
for a sufficiently small µ > 0,
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(A) an appropriate adversary strategy νt = Dt(yt, δt), assures that θt → 0, while βt stays (for
sufficiently large t) within the interval [a0 + (4 + µ)γ0, a0 + (8 + 3µ)γ0], no matter which
normalized control algorithm δt = St(yt) is used.

(B) an appropriate adversary strategy νt = Dt(yt, δt), assures that θt → 0, while βt stays (for
sufficiently large t) within the interval [a0 − (8 + 3µ)γ0, a0 − (4 + µ)γ0], no matter which
normalized control algorithm δt = St(yt) is used.

Combining assertions (A) and (B) (and making µ > 0 sufficiently small) assures that, as long as
γ(a) is finite for all a ∈ [−M,M ], the value of 8γ(a) cannot be smaller than the distance from a to
either end of the [−M,M ] interval, implying the desired lower bound for γ(a).

We are only presenting the strategy for selecting νt in (A), as the construction for (B) is symmetric.
Let I0 denote the interval [a0 + (4 + µ)γ0, a0 + (8 + 3µ)γ0]. For t ≥ t0, define νt by

νt = 0, when |δt| ≥ 2γ0, βt ∈ I0, (13)

νt = −µγ0sign[zt(βt − a0 − (6 + 2µ)γ0)], when |δt| ≥ (2 + µ)γ0, βt 6∈ I0, (14)

νt = −(4 + µ)γ0sign[zt(βt − a0 − (6 + 2µ)γ0)], otherwise, (15)

where the “sign” function is defined by sign(x) = 1 for x ≥ 0, sign(x) = −1 for x < 0, i.e.,
only takes values 1 or −1. Intuitively, the adversary strategy (13)-(15) pursues the following three
objectives:

(a) keep |zt| ≥ 2γ0 at all times;

(b) force βt ∈ I0, eventually;

(c) make νt = 0 when objectives (a) and (b) are satisfied.

Claim 3: Subject to (9) and (13)-(15), condition |zt| ≥ 2γ0 will be satisfied for all t > t0. Indeed,

(3a): in (13), |δt| ≥ 2γ0 and νt = 0, hence |zt+1| = |δt + νt| = |δt| ≥ 2γ0.

(3b): in (14), |δt| ≥ (2 + µ)γ0 and |νt| = µγ0, hence |zt+1| = |δt + νt| ≥ |δt| − |νt| ≥ 2γ0.

(3c): in (15), |δt| ≤ (2+µ)γ0 and |νt| = (4+µ)γ0, hence |zt+1| = |δt+νt| ≥ |δt|− |νt| ≥ 2γ0.

Claim 4: Subject to (9), (13)-(15), and assuming µ ∈ (0, 4), there exists t1 > t0 such that
θt < 4 + 3µ for all t > t1. Indeed, since |νt| ≤ (4 + µ)γ0 and |zt| ≥ 2γ0 for all t > t0, we have

θt+1−
(4 + µ)2

4
=
θt + ν2

t

1 + z2
t

−(4 + µ)2

4
≤ θt + (4 + µ)2γ2

0

1 + 4γ2
0

−(4 + µ)2

4
=

1

1 + 4γ2
0

(
θt −

(4 + µ)2

4

)
for all t > t0, which leads to the conclusion, since 4 + 3µ > (4 + µ)2/4 for all µ ∈ (0, 4).
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Claim 5: If 0 < µ < γ−2
0 /3, and βt ∈ I0 for some t > t1 then |δt| ≥ 2γ0 (and therefore νt = 0,

βt+1 = βt). Indeed, combining |zt| ≥ 2γ0 with θt < 4 + 3µ shows that

γ2
0θt

1 + z2
t

− 1 ≤ γ2
0(4 + 3µ)

1 + 4γ2
0

− 1 =
3µγ2

0 − 1

1 + 4γ2
0

< 0,

hence, using (12),

|δt| ≥

∣∣∣∣∣(βt − a0)
√

1 + z2
t

zt

∣∣∣∣∣−
∣∣∣∣∣δt − (βt − a0)

√
1 + z2

t

zt

∣∣∣∣∣
≥ |βt − a0|

√
1 + z2

t

|zt|
− |βt − a0|γ0

|zt|
= |βt − a0|

√
1 + z2

t − γ0

|zt|
.

Since, for γ0 ≥ 1, the function φ : (0,∞)→ R defined by φ(z) =
√

1+z2−γ0
z has positive derivative

φ̇(z) =
1

z2

(
γ0 −

1√
1 + z2

)
> 0,

it is monotonically increasing on (0,∞), which transofrms the lower bound for |δt| into

|δt| ≥ |βt − a0|
√

1 + z2
t − γ0

|zt|
≥ (4 + µ)γ0

√
1 + 4γ2

0 − γ0

2γ0
> (2 + µ/2)γ0 > 2γ0.

Claim 5 establishes that, once βτ ∈ I0 for some τ > t1, the equalities βt = βτ ∈ I0 and νt = 0
will hold for all t ≥ τ , which will guarantee that θt+1 = θt/(1 + z2

t ) ≤ θt/(1 + 4γ2
0) ≤ θt/5 will

converge to zero as t→ +∞, thus preventing (10) with a = βτ from being satisfied when t is large
enough, no matter how large γ(βτ ) is.

To finish the proof, we need to show that condition βt ∈ I0 will be satisfied for some t > t1.
Indeed, with βt 6∈ I0, the value of νt will be defined by either (14) or (15). Taking into accout that,
for |zt| ≥ 2γ0 ≥ 2, the value of |zt|/

√
1 + z2

t is between 0.5 and 1,

Case 1: according to (14) and (9), βt+1 results from moving βt, which is at least (2 +µ)γ0 away
from the center c0 = a0 + (6 + 2µ)γ0 of I0, by a distance between 0.5µγ0 and µγ0 in the
direction “to the center”, which ensures that |βt+1 − c0| ≤ |βt − c0| − µ/2.

Case 2: according to (15) and (9), βt+1 results from moving βt, which is at least (2 +µ)γ0 away
from c0, by a distance between (2 + µ/2)γ0 and (4 + µ)γ0 in the direction “to the center”,
which ensures that |βt+1 − c0| ≤ |βt − c0| − µ.

Therefore, as long as t > t1 and βt 6∈ I0, the value of |βt − c0| decreases by at least µ/2 at each
step, thus guaranteeing that condition βt ∈ I0 will be satisfied for some t > t1.

D.2. Upper Bound

In this section, we show that, for h < 1/2, the so-called certainty equivalence controller achieves
an upper bound for the closed loop `2 gain which grows linearly with M . This is remarkable, as
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a large `2-gain is usually associated with low robustness to uncertain dynamical feedback, with an
expectation that a system with `2-gain γ can be destabilized by a feedback with `2-gain of 1/γ
(which is certainly true for linear time invariant systems). Since, with h = 0, `2-gain of the closed
loop is shown to be at least M/8, one would expect that some uncertainty ∆ of `2-gain h = 8M−1

would destabilize the system, but this is evidently not happening: according to Thm. 14 below,
all uncertainty `2-gains below h = 0.5 are well tolerated by the certainty equivalence controller
(Alg. 4).

Algorithm 4: Certainty Equivalence Control
Input: Time horizon T , system upper bound parameter M .

1 Initialize x0, u0 = 0
2 for t = 1 . . . T do
3 Observe xt and define z̃t−1(â) = xt − âxt−1 − ut−1.
4 Compute āt = arg minâ

∑t−1
s=0 z̃

2
s (â)

5 Compute ât = clip[−M,M ](āt)

6 Execute ut = −âtxt.
7 end

Theorem 14 For M ≥ 1/4, with a system satisfying condition (6) with h < 1/2, Alg. 4 has

`2-gain(A) ≤ (64M2 − 8h)1/2

(1− 2h)3/2
.

We provide an intuitive explanation why certainty equivalence can provide an `2-gain bound.
If the algorithm estimates â inaccurately, strong convexity of the one dimensional least squares
objective implies that the magnitude of the disturbances is a nontrivial fraction of the magnitude of
the states up to that point. On the other hand, if ât+1 is an accurate estimate of a, we can bound
‖x1:t‖22 using the stability of the closed loop dynamics. An `2-gain bound follows from stitching
these regimes together. While we would like to extend these ideas to high dimensions, we note that
the least squares objective is no longer strongly convex in such a setting. In particular, ‖A − Ât‖2
can be large in a direction where disturbances are small relative to the magnitude of the state. A
more technical approach that yields the tighter bound of Thm. 14 can be found in App. D.2. We
restate Alg. 4 in closed form:

ãt = clip[−M,M ](ât), ât =

{
Qt/Yt, Yt 6= 0,

0, Xt = 0,
Xt =

t−1∑
s=0

x2
s, Qt =

t−1∑
s=0

(xs+1 − us)xs,

(16)
Note that ât is the argument of minimum (with respect to a ∈ R) of the “equation error”

functional

Vt(a) =
t−1∑
s=0

|xt+1 − axt − ut|2 =
t−1∑
s=0

|ws + fs|2, (17)

computed with the data available to the controller at time t.
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Let f, w, x ∈ ` be some signals satisfying (6), where, M ≥ 1/4, and h < 1/2. Let v = f + w.
In addition to variables xt, Qt defined in (16), define Vt = Vt(a) as in (17), and let

Ht = x2
t , Zt = Zt(a) = max

τ≤t
{Vτ (a)− hxτ/2} , Rt =

t−1∑
s=0

f2
s , Wt =

t−1∑
s=0

w2
s .

In contrast with xt, Qt, and Ht, the values Vt = Vt(a) and Zt = Zt(a) are not available to the
controller, as they depend not only on the past observations x0:t, but on the unknown parameter
a ∈ [−M,M ], and variables Rt and Wt depend not only on the past observations x0:t and a ∈
[−M,M ], but also on the unknown dynamics of ∆.

Step 1: Show that the relation between Ht, xt, Vt, Zt, vt, and Ht+1, xt+1, Vt+1, Zt+1 can be
described, for all t ∈ Z+, by

Ht+1 ≤ min
{

8M2, 2Vt/xt
}
Ht + 2v2

t , H0 = 0, (18)

xt+1 = xt +Ht, x0 = 0, (19)

Vt+1 = Vt + v2
t , V0 = 0, (20)

Zt+1 = max {Zt, Vt+1 − hxt+1/2} , Z0 = 0. (21)

Indeed, equations (19)-(21) are evident. To prove (18), note first that, by the definition of ât,

Vt(a) = (a− ât)2xt + min
b∈R

Vt(b) for all a ∈ R,

hence Vt ≥ (a − ât)2xt. Since |a − clip−M,M ](b)| ≤ |a − b| for every a ∈ [−M,M ] and b ∈ R,
applying this to b = â yields Vt ≥ (a− ãt)2xt. Also, since both a and ãt are in [−M,M ], we have
|a− ãt| ≤ 2M . Since the quadratic form σ(p, q) = 2p2 + 2q2 − (p+ q)2 is positive semidefinite,
we have

x2
t+1 = [(a− ãt)xt + vt]

2 ≤ 2(a− ãt)2x2
t + 2v2

t ≤ 2 min
{

4M2, Vt/xt
}
x2
t + 2v2

t .

Step 2: Show that

Zt ≤
1

1− 2h
Rt for all t ∈ Z+. (22)

Indeed, for h = 0 we have wt ≡ 0, hence Vt = Rt, and the inequality (22) holds. For h ∈ (0, 1/2),
the quadratic form

σ(f, w) =
1

2h
w2 +

1

1− 2h
f2 − (f + w)2

is positive semidefinite. Hence, realizing that the L2 gain bound |w0:t| ≤ h|x0:t|means h−2Wt+1 ≤
xt+1, we get

Vt − 0.5hxt ≤ Vt −
1

2h
Wt =

t−1∑
s=0

{
(fs + ws)

2 − 1

2h
w2
s

}
≤ 1

1− 2h

t−1∑
s=0

f2
s =

1

1− 2h
Rt.

Finally, since Rt is monotonically non-decreasing as t increases,

Zt = max
τ≤t
{Vτ − hxτ/2} ≤ max

τ≤t

1

1− 2h
Rτ =

1

1− 2h
Rt.
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Step 3: Use (18)-(20) to show that

Dt
def
= Ht − 2Vt − (8M2 − 1)xt ≤ 0 for all t ∈ Z+. (23)

Indeed, D0 = H0 − 2V0 − (8M2 − 1)x0 = 0 ≤ 0, and bounding Dt+1 in terms of Dt yields

Ht+1−2Vt+1−(8M2−1)xt+1 ≤ 8M2Ht+2v2
t−2(Vt+v

2
t )−(8M2−1)(xt+Ht) = Ht−2Vt−(8M2−1)xt.

Step 4: Use (18)-(21) to show that

Ct
def
= ρZt − 2Ht − xt + 4Vt ≥ 0 for all t ∈ Z+, where ρ =

64M2 − 4

1− 2h
. (24)

Indeed, the inequality is evidently satisfied for t = 0. Assuming that ρZt − 2Ht − xt + 4Vt ≥ 0:

Case 4a: If xt ≤ M−2Vt/4 then Zt ≥ Vt − hxt/2 ≥ (1 − hM−2/8)Vt ≥ (64M2 − 4)ρ−1Vt,
hence

Ct+1 ≥ ρZt − 2(8M2Ht + 2v2
t )− (xt +Ht) + 4(Vt + v2

t )

= ρZt − (16M2 + 1)Ht − xt + 4Vt

≥ ρZt − (16M2 + 1)[2Vt + Vt(8M
2 − 1)M−2/4]− VtM−2/4 + 4Vt

= ρZt − (64M2 − 4)Vt ≥ 0.

Case 4b: IfM−2Vt/4 ≤ xt ≤ 4 then Zt ≥ Vt−hxt/2 ≥ (1−2h)Vt = (64M2−4)ρ−1Vt, hence

Ct+1 ≥ ρZt − 2[2HtVt/xt + 2v2
t ]− (xt +Ht) + 4(Vt + v2

t )

≥ ρZt − [2Vt + (8M2 − 1)xt](1 + 4Vt/xt)− xt + 4Vt

= ρZt − (32M2 − 6)Vt − 8M2xt − 8V 2
t /xt.

The last expression is a concave function of xt, hence its values, with xt ranging over the interval
[M−2Vt/4, 4], are not smaller than its values at the ends of the interval, which are both equal to
ρZt − (64M2 − 4)Vt ≥ 0

Case 4c: if xt ≥ 4 then

Ct+1 ≥ ρZt − 2[2HtVt/(4Vt) + 2v2
t ]− (xt +Ht) + 4(Vt + v2

t ) = Ct ≥ 0.

Step 5: using the inequalities ρZt ≥ 2Ht+xt−4Vt andZt ≥ Vt−hxt/2, for δ = (1−2h)ρ/(4+ρ)
we have either

Case 5a: (1− δ)xt ≥ 4Vt, in which case Zt ≥ δρ−1xt = 1−2h
4+ρ xt, or

Case 5b: (1− δ)xt ≤ 4Vt, in which case Zt ≥ Vt − hxt/2 ≥ 1−δ−2h
4 xt = 1−2h

4+ρ xt.

Combining these two observations together, we have

xt ≤
4 + ρ

1− 2h
Zt ≤

4 + ρ

(1− 2h)2
Rt =

64M2 − 8h

(1− 2h)3
Rt,

which proves that the closed loop L2 gain from f to y is not larger than (64M2−8h)1/2

(1−2h)3/2
.
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Appendix E. Full Analysis

In this section we provide a complete analysis of our main algorithm. We present the algorithm
including a generic exploration set and provide an alternate analysis when all control directions in
an ε-net are explored. We denote an ε-net as Nε,d, defined as:

Definition 15 We define Nε,d ⊆ Rd to be an ε-net of Sd−1, the unit sphere with the euclidean
metric, if for any x ∈ Sd−1, we have x′ ∈ Nε,d such that ‖x− x′‖2 ≤ ε.

Algorithm 5: `2-gain algorithm
Input: System upper bound M , control matrix singular value lower bound L, system

identification parameter ε, threshold parameter α, and exploration set V ⊆ Sd−1.
1 Set q = 0,K = 0.
2 while t ≤ T do
3 Observe xt.
4 if ‖x1:t‖2 > αq then
5 Update q = ‖x1:t‖2.
6 Call Alg. 6 with parameters (q,M,L, ε, α, V ), obtain updated K and budget q.
7 else
8 Execute ut = −Kxt.
9 t← t+ 1

10 end
11 end

Remark 16 We note that when V is the standard basis, Â has the closed form used in Alg.2. In par-
ticular, the unconstrained solution4 of Line 16 in Alg. 6 has Φ(Â) = 0, where Â = [

xt′+2

ξ0
· · · xt′+2d

ξd−1
].

When V is an ε-net, Φ is a maximum of convex functions, and hence a convex function.

E.1. Epoch Notation.

We define epochs in terms of rounds of system identification. In particular, for the kth epoch sk is t
on the kth call to Alg. 6. and ek = min(sk+1 − 1, T ). As such, within an epoch, q is fixed, so we
denote qk = ‖x1:sk‖2 the value of q within epoch k. Correspondingly, we denote the value of q′ in
the kth epoch as q′k.

E.2. Estimation of the Control Matrix

Lemma 17 Suppose ‖f0:T−1‖2 ≤ qk and α ≥ 42dM2dε−d, then in Alg. 7, we have ‖x1:sk+i‖2 ≤
42iM2iqkε

−i, for 0 ≤ i ≤ d.

Proof We prove the lemma by induction. Note that if the lemma was true, no new epoch will start
because ‖x1:t+i‖2 > αq for any i. Now for the base case, note that for i = 0, the inequality holds

4. With small modifications to analysis, the constrained optimization can be replaced by a failure check if ‖Â‖2 > 2M
as this would indicate our disturbance budget is too small.
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Algorithm 6: Adversarial System ID on Budget
Input: Disturbance budget q, system upper bound M , control matrix singular value lower

bound L, system identification parameter ε, threshold parameter α, and exploration set
V ⊆ Sd−1.

1 Define N = |V | ≥ d with V = (v0, v1, . . . , vN−1).
2 Call Alg. 7 with parameters (q,M,L, ε, α), obtain estimator B̂ and updated budget q. Suppose

the system evolves to time t′ = t+ d.
3 Set q′ = 42dM2dε−dq.
4 for i = 0, 1, . . . , 2N − 1 do
5 Observe xt′+i.
6 if ‖x1:t′+i‖2 > αq then
7 Restart SysID from Line 2 with q = ‖x1:t′+i‖2.
8 end
9 if i is even then

10 Play ut′+i = ξi/2B̂
−1vi/2, ξi/2 = 43i/2M3i/2+2q′

εi/2+1 .
11 else
12 Play ut′+i = 0.
13 end
14 end
15 Observe xt′+2N , compute

Â ∈ arg min
Ã:‖Ã‖2<M

Φ(Ã) := max
i∈[0,N)

‖Ãvi −
xt′+2i+2

ξi
‖2 .

Return q,K = B̂−1Â

trivially. Suppose the condition holds for i. For i+ 1, we have

‖xsk+i+1‖2 = ‖Axsk+i +Busk+i + zsk+i‖2
≤M‖xsk+i‖2 +Mλi + h‖x1:sk+i‖2 + qk

≤ 42iM2i+1qkε
−i + 42iM2i+2qkε

−(i+1) + h42iM2iqkε
−i + qk

≤ 42i+1M2i+2qkε
−(i+1)

Adding previous iterations, we have

‖x1:sk+i+1‖2 ≤ 42i+1M2i+2qkε
−(i+1) + 42iM2iqkε

−i ≤ 42(i+1)M2(i+1)qkε
−(i+1).

Lemma 18 Suppose ‖f0:T−1‖2 ≤ qk and α ≥ 42dM2dε−d, then running Alg. 7 with ε ≤ L
12
√
d

produces B̂ such that ‖B̂ − B‖2 ≤ 3ε
√
d and ‖BB̂−1 − I‖2 ≤ 6ε

√
d

L ≤ 1
2 , with ‖x1:sk+d‖2 ≤

42dM2dqkε
−d.
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Algorithm 7: Adversarial Control Matrix ID on Budget
Input: Disturbance budget q, system upper bound M , control matrix singular value lower

bound L, system identification parameter ε, threshold parameter α.
1 for i = 0, 1, . . . , d− 1 do
2 Observe xt+i.
3 if ‖x1:t+i‖2 > αq then
4 Restart SysID with q = ‖x1:t+i‖2.
5 end
6 Play ut+i = λiei+1, λi = 42iM2i+1q

εi+1 .
7 end
8 Observe xt+d, compute

B̂ = [
xt+1

λ0
· · · xt+d

λd−1
].

if ‖x1:t+d‖2 > αqk or σmin(B̂) < L/2 then
9 Restart SysID with q = ‖x1:t+d‖2.

10 end
11 Return q, B̂

Proof First note that as in Lem. 17, no new epoch will start because ‖x1:t+i‖2 > αq for any i. Let
i ∈ [0, d). Consider the estimation error of the i+ 1-th column of B:

‖xsk+i+1

λi
−Bei+1‖2 =

1

λi
‖Axsk+i + zsk+i‖2 ≤

M

λi
‖xsk+i‖2 +

1

λi
‖zsk+i‖2.

By Lem. 17, we have ‖xsk+i‖2, ‖wsk+i‖2 ≤ 42iM2iqkε
−i. Therefore we have

‖xsk+i+1

λi
−Bei+1‖2 ≤

M

λi
‖xsk+i‖2 +

1

λi
‖zsk+i‖2 ≤ 3ε.

Concatenating the column estimates, we upper bound the Frobenius norm of B − B̂,

‖B − B̂‖2F =

d−1∑
i=0

‖xsk+i+1

λi
−Bei+1‖22 ≤ 9dε2.

We conclude that ‖B − B̂‖2 ≤ ‖B − B̂‖F ≤ 3ε
√
d. Moreover, with our choice of ε, we have

‖B − B̂‖2 ≤ L
4 , so by Ky Fan singular value inequalities, we have σmin(B) ≤ σmin(B̂) + L

4 , and
hence σmin(B̂) ≥ L

2 , and the condition in Line 10 will not be triggered.
Now, we can write B = B̂ + 3ε

√
dC for some C ∈ Rd×d, ‖C‖ ≤ 1. Then we have

‖BB̂−1 − I‖ = 3ε
√
d‖CB̂−1‖ ≤ 3

√
dε

σmin(B̂)
≤ 6ε

√
d

L
.
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E.3. Estimation of the System

Lemma 19 Suppose ‖f0:T−1‖2 ≤ qk, α ≥ 42dM2dε−d, and Alg. 6 produces Â such that ‖A −
Â‖2 ≤ εA then the resultant controller K satisfies ‖A−BK‖ ≤ εA + 6εM

√
d

L .

Proof By Lem. 18, the algorithm will not start a new epoch with the choice of α, and we have
‖BB̂−1 − I‖2 ≤ 6ε

√
d

L , so we have

BK = BB̂−1Â = Â+
6ε
√
d

L
CÂ

for C with ‖C‖2 ≤ 1. Thus, we have

‖A−BK‖2 ≤ ‖A− Â‖2 +
6ε
√
d

L
‖C‖‖Â‖ ≤ εA +

6εM
√
d

L
.

Lemma 20 Suppose ‖f0:T−1‖2 ≤ qk and α > R = (4M)5Nε−2N , then Alg. 6 produces Â such
that

max
v∈V
‖(A− Â)v‖2 ≤

28εM
√
d

L
+ 3h ,

with ‖x1:t′+2N‖2 ≤ Rqk.

Proof We first note by choice of α, the SysID will not be restarted. We first upper bound Φ(A).
We also have Φ(Â) ≤ Φ(A) by optimality of Â.

Let i ∈ [0, N). Consider the estimation error of Avi:

‖xt
′+2i+2

ξi
−ABB̂−1vi‖2 =

1

ξi
‖A2xt′+2i +Azt′+2i + zt′+2i+1‖2

≤ M2

ξi
‖xt′+2i‖2 +

M

ξi
‖zt′+2i‖2 +

1

ξi
‖zt′+2i+1‖2 .

By Lemma 21, we have ‖xt′+2i‖2, ‖wt′+2i‖2 ≤ 43iM3iq′kε
−i. Therefore for the first two terms we

have,

M2

ξi
‖xt′+2i‖2 +

M

ξi
‖zt′+2i‖2 ≤

M2

ξi
‖xt′+2i‖2 +

M

ξi
(‖wt′+2i‖2 + ‖ft′+2i‖2) ≤ 3ε.

For the trajectory-dependent noise at time t′ + 2i+ 1, we have

1

ξi
‖wt′+2i+1‖2 ≤

h

ξi
‖x1:t′+2i+1‖2 ≤

h

ξi
(‖x1:t′+2i‖2 + ‖xt′+2i+1‖2)

≤ h

ξi
(43iM3iq′kε

−i + ‖Axt′+2i + ξiBB̂
−1vi + zt′+2i‖2)

≤ hε+
hM

ξi
‖xt′+2i‖2 + h‖BB̂−1‖+

h

ξi
‖zt′+2i‖2

≤ 4ε+ h‖BB̂−1‖ ≤ 4ε+ h(1 +
1

2
) .
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The last inequality holds, via Lem. 18. Therefore we have

‖xt
′+2i+2

ξi
−ABB̂−1vi‖2 ≤ 8ε+

3h

2
.

Adding the error induced by the bias of B̂,

‖xt
′+2i+2

ξi
−Avi‖2 ≤ ‖

xt′+2i+2

ξi
−ABB̂−1vi‖2 + ‖ABB̂−1vi −Avi‖2

≤ 8ε+
3h

2
+ ‖A‖‖BB̂−1 − I‖

≤ 8ε+
3h

2
+

6M
√
dε

L
≤ 14εM

√
d

L
+

3h

2
.

Therefore, we have Φ(Â) ≤ Φ(A) ≤ 14εM
√
d

L + 3h
2 and it follows that

max
v∈V
‖(A− Â)v‖2 = max

i∈[0,N)
‖(A− Â)vi‖2

≤ max
i∈[0,N)

(
‖Avi −

xt′+2i+2

ξi
‖2 + ‖Âvi −

xt′+2i+2

ξi
‖2
)

≤ Φ(A) + Φ(Â) ≤ 28εM
√
d

L
+ 3h .

Finally, for the state magnitude at the final iteration, by Lem. 21

‖xt′+2N‖2 = ‖Axt′+2N−1 + wt′+2N−1 + ft′+2N−1‖2
≤M‖xt′+2N−1‖2 + h‖x1:t′+2N−1‖2 + qk

≤ 43N−1M3Nq′kε
−N + h43N−1M3N−1q′kε

−N + qk

≤ 3 · 43N−1M3Nq′kε
−N .

Adding previous iterations, we have ‖x1:t′+2N‖2 ≤ 43NM3Nq′kε
−N ≤ 45NM5Nε−2Nqk.

Lemma 21 Suppose ‖f0:T−1‖2 ≤ qk and α > R = (4M)5Nε−2N , then in Alg. 6, for odd it-
erations after t′, we have ‖x1:t′+2i+1‖2 ≤ 43i+2M3i+2q′kε

−(i+1), and for even iterations we have
‖x1:t′+2i‖2 ≤ 43iM3iq′kε

−i, for 0 ≤ i < N .

Proof We prove this by induction. Note, by the condition on α, SysID will not be restarted as long
as our bounds on ‖x1:t′+j‖2 hold. For the base case, note that for i = 0, the even case holds because
by Lemma 17, ‖x1:sk+d‖2 ≤ q′k. For the odd case, we have

‖xt′+1‖2 ≤ ‖Axt′‖2 + ξ0‖BB̂−1‖2 + ‖zt′‖2
≤M‖xt′‖2 + 2ξ0 + hq′k + qk

≤ 3Mq′k +
2M2q′k
ε

≤
5M2q′k
ε

,
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where the first inequality holds by Lemma 18. Adding the previous iterations, we have ‖x1:t′+1‖2 ≤
6M2q′kε

−1 ≤ 42M2q′kε
−1. Now, suppose the conditions hold for both even and odd iterations for

i. For i+ 1, for the even iteration,

‖xt′+2(i+1)‖2 = ‖Axt′+2i+1 + wt′+2i+1 + ft′+2i+1‖2
≤M‖xt′+2i+1‖2 + h‖x1:t′+2i+1‖2 + qk

≤ 43i+2M3(i+1)q′kε
−(i+1) + h43i+2M3i+2q′kε

−(i+1) + qk

≤ 3 · 43i+2M3(i+1)q′kε
−(i+1).

Adding previous iterations, we have

‖x1:t′+2(i+1)‖2 ≤ 43(i+1)M3(i+1)q′kε
−(i+1).

For the odd iteration,

‖xt′+2(i+1)+1‖2 = ‖Axt′+2(i+1) +But′+2(i+1) + wt′+2(i+1) + ft′+2(i+1)‖2
≤M‖xt′+2(i+1)‖2 + 2ξi+1 + h‖x1:t′+2(i+1)‖2 + qk

≤ 43i+3M3i+4q′kε
−(i+1) + 2 · 43i+3M3i+5q′kε

−(i+2) + h43i+3M3i+3q′kε
−(i+1) + qk

≤ 5 · 43i+3M3i+5q′kε
−(i+2).

Adding the previous iterations, we have

‖x1:t′+2(i+1)+1‖2 ≤ 43(i+1)+2M3(i+1)+2q′kε
−(i+2) .

E.4. Cost of linear control

Lemma 22 If ‖f0:T−1‖2 ≤ qk, and ut = −Kxt for t ≥ t∗ ≥ sk, with ‖A−BK‖2 ≤ 1/2 then for
h ≤ 1

6 ,

‖x1:ek‖
2
2 ≤

18‖x1:t∗‖22 + 72q2
k

7
.

Proof We first prove that ‖xt∗:t‖22 ≤ 4‖zt∗:t−1‖22 + 2‖xt∗‖22 by induction on t ≥ t∗. For the base
case, we have ‖xt∗:t∗‖22 ≤ 2‖xt∗‖22. Now note that

‖xt∗:t+1‖22 =
t+1∑
s=t∗

‖xs‖22 = ‖xt∗‖22 +
t∑

s=t∗

‖xs+1‖22

= ‖xt∗‖22 +
t∑

s=t∗

‖(A−BK)xs + zs‖22

≤ ‖xt∗‖22 + 2

t∑
s=t∗

‖(A−BK)‖22‖xs‖22 + ‖zs‖22

≤ ‖xt∗‖22 +
1

2

t∑
s=t∗

‖xs‖22 + 2

t∑
s=t∗

‖zs‖22

= ‖xt∗‖22 +
‖xt∗:t‖22

2
+ 2‖zt∗:t‖22.
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Applying the inductive hypothesis, we have

‖xt∗:t+1‖22 ≤ ‖xt∗‖22 +
‖xt∗:t‖22

2
+ 2‖zt∗:t‖22 ≤ ‖xt∗‖22 +

4‖zt∗:t−1‖22 + 2‖xt∗‖22
2

+ 2‖zt∗:t‖22

≤ 2‖xt∗‖22 +
4‖zt∗:t‖22

2
+ 2‖zt∗:t‖22

≤ 4‖zt∗:t‖22 + 2‖xt∗‖22.

Adding ‖x1:t∗−1‖22 to both sides, we have, for t ≥ t∗, ‖x1:t‖22 ≤ 2‖x1:t∗‖22 + 4‖zt∗:t−1‖22.
Using Assumption 1 and using the shorthand ws for ws(x1:s), we have

‖zt∗:t−1‖22 =
t−1∑
s=t∗

‖zs‖22 =
t−1∑
s=t∗

‖ws + fs‖22

≤ 2

t−1∑
s=t∗

‖ws‖22 + ‖fs‖22

≤ 2h2‖x1:t−1‖22 + 2‖f0:t−1‖22.

Using this bound, we have

‖x1:t‖22 ≤ 2‖x1:t∗‖22 + 8h2‖x1:t−1‖22 + 8‖f0:t−1‖22 ≤ 2‖x1:t∗‖22 + 8h2‖x1:t‖22 + 8‖f0:t−1‖22 .

Rearranging and bounding using h = 1
6 , we have

‖x1:t‖22 ≤
2‖x1:t∗‖22 + 8‖f0:t−1‖22

1− 8h2
≤ 18‖x1:t∗‖22 + 72‖f0:t−1‖22

7
.

The result follows using t = ek and using ‖f0:T−1‖ ≤ qk.

E.5. Exploration on Standard Basis

We consider the case where V = {e1, e2, . . . , ed}.

Lemma 23 Suppose h ≤ 1
12
√
d

, V = {e1, e2, . . . , ed}, and ε = L
150Md , then if ‖f0:T−1‖2 ≤ qk

and α =
(

414M8d2

L2

)d, the running Alg. 5 has states bounded by

‖x1:ek‖2 ≤ αqk .

Proof We first note that α is sufficiently large such that Lem. 20 holds, and we have for each i,
‖(A− Â)ei‖2 ≤ 28εM

√
d

L + 3h. Now we note,

‖A− Â‖2 ≤ ‖A− Â‖F =

√√√√ d∑
i=1

‖Aei − Âei‖22 ≤
√
d
(28εM

√
d

L
+ 3h

)
.
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Applying, Lem. 19 and plugging in bounds on ε and h, we have

‖A−BK‖2 ≤ ‖A− Â‖2 +
6εM

√
d

L
≤ 34εMd

L
+ 3h

√
d ≤ 34

150
+

1

4
<

1

2
.

Now applying, Lem. 22 along with the state bound ‖x1:t′+2d‖ ≤ (4M)5dε−2dqk from Lem. 20, we
have

‖x1:ek‖
2
2 ≤

18((4M)5dε−2dqk)
2 + 72q2

k

7
≤ ((4M)6dε−2dqk)

2 .

Noting that ε > L
44Md

, we get our result by bounding (4M)6dε−2d.

E.6. Exploration on ε-net

We consider the case where V is an ε-net of the unit sphere.
From Lemma 5.3 of Vershynin (2012), there exists an ε-net for the unit sphere of size

(
1 + 2

ε

)d.
We consider V = N1/2,d such that N = |V | = 5d.

Lemma 24 Suppose h ≤ 1
15 , V = N1/2,d, and ε = L

1000M
√
d

, then if ‖f0:T−1‖2 ≤ qk and

α = (416M8d
L2 )5d , the running Alg. 5 has states bounded by

‖x1:ek‖2 ≤ αqk .

Proof By Lem. 20, we have for each v ∈ N1/2,d, ‖(A− Â)v‖2 ≤ 28εM
√
d

L + 3h. Now, we note that
‖A− Â‖2 ≤ (1− 1/2)−1 maxv∈N1/2,d

‖(A− Â)v‖2 by a triangle inequality argument (see Lemma

5.4 of Vershynin (2012)), so we have ‖A− Â‖2 ≤ 56εM
√
d

L + 6h. Applying, Lem. 19 and plugging
in bounds on ε and h, we have

‖A−BK‖2 ≤ ‖A− Â‖2 +
6εM

√
d

L
≤ 62εM

√
d

L
+ 6h ≤ 62

1000
+

2

5
<

1

2
.

Now applying, Lem. 22 along with the state bound ‖x1:t′+2N‖ ≤ (4M)5Nε−2Nqk from Lem. 20
with N = 5d, we have

‖x1:ek‖
2
2 ≤

18((4M)5Nε−2Nqk)
2 + 72q2

k

7
≤ ((4M)6Nε−2Nqk)

2 .

Noting that ε > L
45M

√
d

, we get our result by bounding (4M)6Nε−2N .

30



ROBUST ONLINE CONTROL WITH MODEL MISSPECIFICATION

E.7. Final `2-gain bounds

Theorem 25 Suppose h ≤ 1
12
√
d

, V = {e1, e2, . . . , ed}, and ε = L
150Md and α =

(
414M8d2

L2

)d,

then Alg. 5 has `2 gain bounded by 10M2α2

L <
(

415M10d2

L3

)2d.

Proof First, observe that ‖x1:T ‖2 ≤ αqk, where k is the final epoch. Indeed, if sk < T , then
by the design of the algorithm this condition is satisfied. Otherwise, we take qk = ‖x1:T ‖2, and
the algorithm stops before entering the system identification subroutine. Now we will show that
running Alg. 5, ‖f0:T−1‖2 ≥ qkL

10M2α
, so

‖x1:T ‖2
‖f0:T−1‖2

≤ 10M2α2

L
.

We break into three cases:

1. No failure occurred.

2. σmin(B̂) < L
2 in Alg. 7 (line 10).

3. Failure check ‖x1:sk‖2 > αqk−1 occurs in Alg. 5 (line 5), Alg. 7 (line 4), or Alg. 6 (line 7),or
Alg. 7 (line 10).

We first note that qk = ‖x1:sk‖2 by definition. We also note that if k > 1 (Cases 2 and 3),
‖f0:T−1‖2 > qk−1. Suppose ‖f0:T−1‖2 ≤ qk−1, then by Lem. 23 and choice of α, the epoch k − 1
would never have ended. We now analyze each case separately.

Case 1: Failure never occurs Here we must have ‖x1:T ‖2 = 0 because q is initialized at 0. K is
initialized to 0, so ‖u1:T−1‖2 = 0 and ‖f0:T−1‖2 = 0 = q.

Case 2: Failure occurs in Alg. 7 (line 10) second condition
We know σmin(B) > L, so we must have ‖B̂ − B‖ > L

2 . By Lemma 18, if ‖f0:T−1‖ ≤ qk−1,
‖B̂ − B‖ ≤ 3

√
dε ≤ L

2 , so by contradiction we must have ‖f0:T−1‖ > qk−1. We now note that
qk ≤ αqk−1, otherwise, we would have failed the other condition of the if-statement. Combining,
we have ‖f0:T−1‖ > qk

α .

Case 3: Failure occurs in Alg. 5 (line 5), in Alg. 7 (line 4), or Alg. 6 (line 7), or the first condition
of Alg. 7 (line 10)

There are three possibilities for the control in the previous iteration: usk−1 = −Kxsk−1, usk−1 =
0, or usk−1 is from Alg. 7 (line 5) or Alg. 6 (line 11) and is a fixed control such that ‖usk−1‖2 <
αqk−1. To see this, we note that exploration controls are progressively increasing so we just need to
look at the last large control played by Alg. 6. Thus, ‖usk−1‖2 ≤ ‖B̂−1‖ξN ≤ 2ξN

L ≤ αqk−1.
For the first case, we note that

‖K‖2 = ‖B̂−1Â‖2 ≤ ‖B̂−1‖2‖Â‖2 ≤
2M

L
.

Above, we use the fact that Alg. 7 always produces a B̂ with σmin(B̂) ≥ L
2 and ‖Â‖2 < M . Noting

that ‖x1:sk−1‖2 ≤ αqk−1, because otherwise the epoch would have ended on the previous iteration
, we have ‖usk−1‖2 ≤ 2Mαqk−1

L in all cases.
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We now bound ‖xsk‖2 by applying the triangle inequality and system bounds:

‖xsk‖2 = ‖Axsk−1 +Busk−1 + wsk−1 + fsk−1‖2
≤M‖xsk−1‖2 +M‖usk−1‖2 + ‖wsk−1‖2 + ‖fsk−1‖2
≤M‖x1:sk−1‖2 +M‖usk−1‖2 + h‖x1:sk−1‖2 + ‖fsk−1‖2

≤ 4M2α

L
qk−1 + ‖fsk−1‖2

Adding the previous iterations, we have

qk = ‖x1:sk‖2 ≤ ‖x1:sk−1‖2 +
4M2α

L
qk−1 + ‖fsk−1‖2

≤ αqk−1 +
4M2α

L
qk−1 + ‖fsk−1‖2 ≤

5M2α

L
qk−1 + ‖fsk−1‖2 .

Suppose ‖fsk−1‖2 > 5M2α
L qk−1, then we immediately have ‖f0:T−1‖2 ≥ qk

2 . Alternatively, we

have qk ≤ 10M2αqk−1

L . Now since ‖f0:T−1‖2 > qk−1 , we have ‖f0:T−1‖2 > Lqk
10M2α

.

Theorem 26 Suppose h ≤ 1
15 , V = N1/2,d, ε = L

1000M
√
d

, and α = (416M8d
L2 )5d , then Alg. 5 has

`2 gain bounded by (417M10d
L3 )2·5d .

Proof This follows exactly as Theorem 25 using Lem. 24 in place of Lem. 23.

Appendix F. Cusumano-Poolla Algorithm

While Thm. 1 and Thm. 26 achieve robustness independent of any system parameters with exponen-
tial and doubly-exponential `2-gain respectively, these algorithms are only applicable in the limiting
settings where the control input matrixB is full rank. In contrast, the general task of designing adap-
tive controllers with finite closed loop `2-gain has been solved by Cusumano and Poolla (1988a).
The Cusumano-Poolla algorithm works by iteratively testing all controllers, switching to a new con-
troller when the gain exceeds some proposed bound. As long as their is a candidate controller that
can satisfy the proposed bound, this algorithm will eventually converge. For completeness, we will
analyze this algorithm, in the case that that our nominal linear dynamical system is strongly stabi-
lizable (Cohen et al., 2018), a quantitative notion of stabilizability. Unlike our main setting, here we
assume B ∈ Rd×p so controls ut ∈ Rp.

Definition 27 A LDS (A,B) is κ-strongly stabilizable if there exists a linear controller K with
‖K‖2 ≤ κ such thatA+BK = HLH−1, whereH,L are matrices satisfying ‖H‖2, ‖H−1‖2, ‖H‖2‖H−1‖2 ≤
κ and ‖L‖2 ≤ 1− 1

κ .

We also will need to use an ε-net over candidate controllers for this algorithm.
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Algorithm 8: Cusumano-Poolla algorithm
Input: System upper bound M, strong controllability parameter κ, disturbance bound F .

1 Set α = 27κ4,K′ = N ∗ 1
2Mκ2

,K

2 Initialize q = F , pick arbitrary controller K from K′.
3 for t = 1 . . . T do
4 Observe xt.
5 if ‖x1:t‖2 > αq then
6 Update q = ‖x1:t‖2.
7 Update candidate controllers: K′ = K′ \ {K}.
8 Pick any K from K.
9 else

10 Execute ut = −Kxt.
11 end
12 end

Definition 28 Let K = {K ∈ Rd×p : ‖K‖2 ≤ κ} be the spectral norm ball of radius κ. We define
N ∗ε,K ⊆ K to be an ε-net of K, with the metric d(X,Y ) = ‖X − Y ‖2 if for any K ∈ K, we have
K ′ ∈ N ∗ε,κ,d×p such that ‖K −K ′‖2 ≤ ε.

Theorem 29 IfF = ‖f0:T−1‖2, and h < 1
5κ4

, then Alg. 8 has `2-gain bounded by
(
135κ5M

)(4Mκ3
√
dp)dp .

Proof We first note that there exists a controller K ∈ K′ such that Lem. 31 holds, in which case
the controller will never switch. To get an `2-gain bound, we need to bound the state expansion
that occurs using any other K ∈ K′. We note that ‖A + BK‖2 ≤ 2κM , when a controller pushes
‖x1:t‖2 above αq, we have

‖xt‖2 ≤ 2κM‖xt−1‖2 + ‖wt−1‖2 + ‖ft−1‖ ≤ (2καM + h+ 1)q .

Adding in ‖x1:t−1‖2 < αq, we have ‖x1:t‖2 ≤ 5καMq. This state expansion can occur at most
once per controller in K′. By Lem. 30, |K′| < (4Mκ3

√
dp)dp and hence,

‖x1:T ‖2 ≤
(
5καM

)(2Mκ3
√
dp)dp

F .

Plugging in α, yields the result.

Lemma 30 There exists an ε-net for K such that |N ∗ε,K| ≤
(2κ
√
dp

ε

)dp.
Proof This follows by choosing a grid with granularity ε√

pd
in each coordinate, assuring that for any

K there is aK ′ in the net at most ε√
pd

away in each coordinate. This guarantees that ‖K−K ′‖F ≤ ε
and so ‖K −K ′‖2 ≤ ε.
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Lemma 31 If (A,B) is κ-strongly stabilizable, and h < 1
5κ4

then there exists a linear controller
K ∈ N ∗ 1

2Mκ2
,K such that if the controller is played from iteration t∗ to iteration T , the states are

bounded by

‖x1:T ‖2 ≤
√

100κ4‖x1:t∗‖22 + 625κ7‖f0:T−1‖22 ≤ 27κ4 max(‖x1:t∗‖2, ‖f0:T−1‖2) .

Proof From strong stablizability, for some K∗ ∈ K we can write A + BK∗ = HLH−1 with
‖H‖2‖H−1‖2 ≤ κ and ‖L‖2 ≤ 1 − 1

κ . We define yt = H−1xt. Let K be a controller in the ε-net
such that ‖K −K∗‖ ≤ 1

Mκ2
.

We first prove that ‖yt∗:t‖22 ≤ 12κ5‖zt∗:t−1‖22 + 4κ2‖yt∗‖22 by induction on t ≥ t∗. For the
base case, we have ‖yt∗:t∗‖22 ≤ 4κ2‖yt∗‖22 since κ ≥ 1. Now note that

‖yt∗:t+1‖22 =

t+1∑
s=t∗

‖ys‖22 = ‖yt∗‖22 +

t∑
s=t∗

‖ys+1‖22

= ‖yt∗‖22 +

t∑
s=t∗

‖H−1((A−BK)xs + zs)‖22

= ‖yt∗‖22 +
t∑

s=t∗

‖H−1((A−BK∗ +B(K −K∗)))xs + zs)‖22

= ‖yt∗‖22 +
t∑

s=t∗

‖(L+H−1B(K −K∗)H)yt +H−1zs‖22

≤ ‖yt∗‖22 + (1 +
1

2κ
)

t∑
s=t∗

‖L+H−1B(K −K∗)H‖22‖ys‖22 + (1 + 2κ)

t∑
s=t∗

κ2‖zs‖22

≤ ‖yt∗‖22 + (1− 1

4κ2
)

t∑
s=t∗

‖ys‖22 + 3κ3
t∑

s=t∗

‖zs‖22

= ‖yt∗‖22 + (1− 1

4κ2
)‖yt∗:t‖22 + 3κ3‖zt∗:t‖22 .

Above, we use the fact that

‖L+H−1B(K −K∗)H‖2 ≤ ‖L‖2 + ‖H‖2‖H−1‖2‖B‖2‖K −K∗‖2 ≤ (1− 1

κ
) + κM · 1

2Mκ2
≤ 1− 1

2κ
.

Applying the inductive hypothesis, we have

‖yt∗:t+1‖22 ≤ ‖yt∗‖22 + (1− 1

4κ2
)‖yt∗:t‖22 + 3κ3‖zt∗:t‖22

≤ ‖yt∗‖22 + (1− 1

4κ2
)(12κ5‖zt∗:t−1‖22 + 4κ2‖yt∗‖22) + 3κ3‖zt∗:t‖22

≤ 4κ2‖yt∗‖22 + 12κ5‖zt∗:t‖22 .

Adding ‖y1:t∗−1‖22 to both sides, we have, for t ≥ t∗, ‖y1:t‖22 ≤ 4κ2‖y1:t∗‖22 + 12κ5‖zt∗:t−1‖22.
Now, by definition of yt and ‖H‖2‖H−1‖2 ≤ κ, we note that ‖x1:t‖22 ≤ 4κ4‖x1:t∗‖22+12κ7‖zt∗:t−1‖22.
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Using Assumption 1 and using the shorthand ws for ws(x1:s), we have

‖zt∗:t−1‖22 =

t−1∑
s=t∗

‖zs‖22 =

t−1∑
s=t∗

‖ws + fs‖22

≤ 2
t−1∑
s=t∗

‖ws‖22 + ‖fs‖22

≤ 2h2‖x1:t−1‖22 + 2‖f0:t−1‖22.

Using this bound, we have

‖x1:t‖22 ≤ 4κ4‖x1:t∗‖22 + 24κ7h2‖x1:t−1‖22 + 24κ7‖f0:t−1‖22 ≤ 4κ4‖x1:t∗‖22 + 24κ7h2‖x1:t‖22 + 24κ7‖f0:t−1‖22 .

Rearranging and plugging in the bound on h, we have

‖x1:t‖22 ≤
4κ4‖x1:t∗‖22 + 24κ7‖f0:t−1‖22

1− 24κ7h2
≤ 100κ4‖x1:t∗‖22 + 625κ7‖f0:t−1‖22 .

Remark 32 For simplicity, Alg. 8 assumes we know the total disturbance magnitude ‖f1:T ‖2 ex-
actly. The same doubling scheme from Alg. 5 can be adapted if the disturbance magnitude is not
known by looping through the full ε-net of controllers in epochs until an appropriate F is found.
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